Developments in pattern calculus presented at the Third Workshop on the Rho-calculus, King’s College, London

Barry Jay
Microsoft Research Ltd
University of Technology, Sydney

23rd October, 2006

Abstract
In lambda-calculus, functions are first-class entities, able to be passed as parameters or returned as results. In rho-calculus, rewrite rules are also first-class. Rules are functions represented by a
pattern (the left-hand side of the rule) and a body (the right-hand side). In pattern calculus, patterns are first-class. That is, dynamic behaviour not only assembles complex procedures from given rewriting rules, but also constructs the rewriting rules themselves dynamically. This is particularly useful for modelling queries, as applied to databases, and indeed for querying XML and other distributed data, where the required patterns must be constructed from distributed information.

This lecture will survey some of the developing theory of pattern calculus. Topics will include: the pure pattern calculus; modelling relational queries; and the relationship to rho-calculus.
Topics

• To outline my research program

• To present the latest account of the pure pattern calculus

• To give examples from query languages.

• To compare this with ρ-calculus, especially as in PPTS.

• To present a polymorphically typed pattern calculus.
Outline my research program

Collaborators: Daniele Gorla, Freeman Huang, Simon Peyton-Jones, Delia Kesner, Helen Lu, Eugenio Moggi, Clara Murdaca, Tony Nguyen, David Skillicorn, …

I’m drafting a monograph, provisionally entitled *The pattern calculus: computing with functions and structures*. Let’s look at the table of contents.
Pure pattern calculus
The history of pattern calculus in syntax

\[
\begin{align*}
t &= x \mid c \mid t \mid p \rightarrow tt \mid \text{let } x = t \text{ in } t \mid \text{fix } t \ (\text{TOPLAS}) \\
t &= x \mid \bullet \mid tt \mid t \rightarrow_\theta t \ (\text{ESOP’06}) \\
t &= x \mid tt \mid t \rightarrow_\theta t \ (\text{my web-site}) \\
t &= x \mid tt \mid [\theta]t \rightarrow t \ (\text{latest}).
\end{align*}
\]
Pure pattern calculus

The terms of the pure pattern calculus are given by

\[
 t ::= \begin{array}{ll}
 \text{(term)} & \\
 \text{(variable)} & x \\
 \text{(application)} & tt \\
 \text{(case)} & [\theta] \ t \rightarrow t
 \end{array}
\]

\[\text{whee } \theta \text{ is a sequence of distinct variables.}\]
Examples

\[\text{elim} = [x] x \rightarrow [y] x y \rightarrow y \]

\[\text{elim \ leaf (leaf 4)} \rightarrow ([y] \text{leaf } y \rightarrow y) \ (\text{leaf 4}) \]
\[\rightarrow \{\text{leaf 4}/[y] \text{leaf } y\} \ y \]
\[= \{4/y\}y = 4 \]

Matching and substitution are implicit.

Patterns may have free variables as well as binding variables.
Equality

Let $\lambda x.s$ be $[x]x \rightarrow s$.

\[
\text{equal } x = \\
[\]x \rightarrow \text{true} \\
\mid [y]y \rightarrow \text{false}.
\]

Here the free variable x is used as the pattern.

This is \textit{pattern polymorphism}.
Two obvious questions

Q: What is the status of the constructors leaf, true, etc?
A: They are variables that live in a special context \(\gamma \) introduced shortly.

Q: How are cases combined (using \(\mid \))?
A: In the pure calculus, such extensions can be encoded as cases by adopting a special convention for match failure, introduced shortly.
Searching

select \(t \; z = \)

\((\text{if } t \; z \text{ then } \text{cons } z \text{ else } \lambda y.y) \)

\([x, y] x \; y \rightarrow (\text{select } t \; x)@ (\text{select } t \; y) \)

\(| \; [x] \; x \rightarrow \text{nil} \)

where @ is append. For example,

select iseven (Node 2 (Node 3 (leaf 5) (leaf 6)))

reduces to cons 2 (cons 6 nil).

This is path polymorphism.
Constructors

Let γ be a sequence of variables, the *constructors*.

For now, you can think of γ as a fixed class of terms, but soon it will vary.
Atoms and compounds

`select` is an example of a pattern-matching function with two cases: one for atoms and one for compounds. The latter match the pattern `[x, y] x y → . . .`. The \(\gamma\)-data structures are given by

\[
d ::= x \ (\text{in } \gamma) \mid d \ t
\]

For example, if `leaf` \(\in \gamma\) then `leaf nil` and `leaf ([x]x \rightarrow x)` are \(\gamma\)-data structures. Data structures which are applications are `compounds`.

The `\gamma`-matchable forms are the \(\gamma\)-data structures and the cases. Those which are not compounds are `atoms`.
Matching

\[
\{u \ \parallel \ [\theta] \ x\}_{\gamma} \ = \ \{u/x\} \text{ if } x \in \theta \\
\{c \ \parallel \ [\theta] \ c\}_{\gamma} \ = \ \{\} \text{ if } c \in \gamma \\
\{u \ v \ \parallel \ [\theta] \ p \ q\}_{\gamma} \ = \ \{u \ \parallel \ p\}_\gamma \uplus \ \{v \ \parallel \ q\}_\gamma \\
\quad \text{if } q \ p \text{ is a } \gamma, \theta\text{-matchable form} \\
\quad \text{and } v \ u \text{ is a } \gamma\text{-matchable form} \\
\{u \ \parallel \ [\theta] \ p\}_{\gamma} \ = \ \text{none} \text{ if } p \text{ is a } \gamma, \theta\text{-matchable form} \\
\quad \text{and } u \text{ is a } \gamma\text{-matchable form} \\
\{u \ \parallel \ [\theta] \ p\}_{\gamma} \ = \ \text{undefined, otherwise.}
\]

Define none \(s = \lambda y. y \).
Checking

The check of a match μ on a set of variables θ is μ if μ is a substitution whose domain is exactly θ and is none otherwise.

Let p and u be terms and let θ and γ be disjoint sets of variables. Define the matching $\{u / [\theta] p\}_{\gamma}$ of p against u with respect to binding variables θ and constructors γ to be the check of $\{u \parallel [\theta] p\}_{\gamma}$ on θ.

Each binding variable is bound exactly once.
The match rule

\[([\theta] p \rightarrow s) \ u >_\gamma \{u/[\theta] p\}_\gamma s \quad \text{(match)} \]
Reduction wrt γ

\[
([\theta] \ p \to \ s) \ u \overset{}{\longrightarrow}_{\gamma} \ \{u/\theta \ p\}_{\gamma} \ s
\]

\[
\ldots
\]

\[
\frac{p \overset{}{\longrightarrow}_{\gamma,\theta} \ q}{([\theta] \ p \to s) \overset{}{\longrightarrow}_{\gamma} \ ([\theta] \ q \to s)}
\]

\[
\ldots
\]

When reducing a pattern, its binding variables are treated as if they are constructors.
Motivating example

\[[x]([x \rightarrow p) x \rightarrow x \quad \xrightarrow{\varepsilon} \quad [x]p \rightarrow x \]

since

\((x \rightarrow p) x >_x x.\)

Otherwise the pattern \((x \rightarrow p) x\) would be stuck.

It is safe to match \(x\) with itself, to treat it as a constructor, since it is in the pattern used to generate a substitution, not the subject of substitution itself.
A definition of constructors

Constructors are binding variables as they appear in patterns.

This kills two birds with one stone. The pathological example reduces, and the syntactic class of constructors is eliminated.
Names and concurrency

There is a curious parallel with the status of names in concurrency. The concurrent pattern calculus (with Daniele Gorla) supports symmetric matching

\[(\theta \ p \rightarrow s) \ | \ (\varphi q \rightarrow t) > \gamma \ {p[\theta|\varphi]q}(s \ | \ t)\]

For example,

\[(x \ c 3 \ x \rightarrow s \ x) \ | \ (y c y \ true \rightarrow t \ y) > c \quad s \ true \ | \ t \ 3.\]

The constructor c represents a communication channel and x and y are names whose values are exchanged simultaneously (symmetric information exchange).
Parametrising by γ ...

...threatens to destabilise the rewriting theory but we may convert a program p whose constructors are all in γ to the term

$$p \rightarrow_{\gamma} \bullet$$

where \bullet is some closed normal form, e.g. $[x]x \rightarrow x$. Now reduce using $\rightarrow_{\varepsilon}$.

Theorem 0.1 *Reduction with respect to $\gamma = \varepsilon$ is a rewrite relation.*

Proof If $p \rightarrow_{\gamma} p'$ then $p \rightarrow_{\gamma, \theta} p'$ so

$$[\theta]p \rightarrow s \rightarrow_{\gamma} [\theta]p' \rightarrow s.$$
Confluence and progress

Reduction in pure pattern calculus is confluent.

Standard parallel reduction techniques apply.

Note that there is no need to restrict the class of patterns since matching on applications is restricted to compounds, where the application cannot reduce.

Reduction does not get stuck since normal forms are always matchable forms.
Extensions

The idea: match success or failure provides a branching mechanism.

\[
[\theta]p \rightarrow s \mid r = \lambda x.(\[\theta\]p \rightarrow \lambda y.s)\ x\ (r\ x)
\]

If \(p\) matches against \(x\) then \(r\ x\) is discarded, else match failure replaces \(\lambda y.s\) by the identity, which is then applied to \(r\ x\).

Note: this trick will not work in a typed setting.
Updating

There are several forms of updating, just as there are of selecting. Here is one.

\[
\text{update } x \ f = \\
\quad [y] x \ y \rightarrow x (f \ y) \\
\quad | \ [y, z] y \ z \rightarrow \text{update } x \ f \ y (\text{update } x \ f \ z) \\
\quad | \ [y] y \rightarrow y.
\]
Here is another form of updating

\[
\text{apply2all } f = \\
[x, y] x y \rightarrow f (\text{apply2all } f x) (\text{apply2all } f y) \\
| \ f
\]
Comparison with ρ-calculus

<table>
<thead>
<tr>
<th></th>
<th>ρ-calculus</th>
<th>pattern calculus</th>
</tr>
</thead>
<tbody>
<tr>
<td>first-class</td>
<td>rewriting rules</td>
<td>patterns</td>
</tr>
<tr>
<td>examples</td>
<td>theorem-proving</td>
<td>queries</td>
</tr>
<tr>
<td>eq’ns/constr’nts</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>compounds</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>constructors</td>
<td>primitive</td>
<td>defined</td>
</tr>
<tr>
<td>for confluence</td>
<td>rigid patterns</td>
<td>all patterns</td>
</tr>
<tr>
<td>matching</td>
<td>explicit</td>
<td>implicit*</td>
</tr>
<tr>
<td>...on abstractions</td>
<td>yes</td>
<td>no*</td>
</tr>
</tbody>
</table>
Matching on cases – under development

If desired, add the rule

\[
\{[[\varphi] u \rightarrow v \parallel [\theta] [\varphi] p \rightarrow q}\}_\gamma = \{u \parallel [\theta] p\}_{\varphi,\gamma} \uplus \{v \parallel [\theta] q\}_{\varphi,\gamma}
\]

What are the interesting examples?
Explicit operations – under development

(in discussions with Eugenio Moggi)

Define

\[\{u/x\}s = ([x] x \rightarrow s) \ u. \]

Then explicit substitution is as usual:

\[\{u/x\}x >_\gamma u \]

\[\{u/x\}y >_\gamma y \text{ if } y \neq x \]

\[\{u/x\}(r \ s) >_\gamma \{u/x\}r \ \{u/x\}s \]

\[\{u/x\}([\theta] p \rightarrow s) >_\gamma [\theta] \{u/x\}p \rightarrow \{u/x\} \]

\[\text{if } x, \text{ ftv}(u) \cap \theta = \{\}. \]
Explicit matching

\[(\emptyset x \rightarrow s) \, x >_{\gamma} \, s \text{ if } x \in \gamma\]

\[(\theta p q \rightarrow s) \, (u \, v) >_{\gamma} \, ([\theta_1] \, p \rightarrow ([\theta_2] \, q \rightarrow s) \, v) \, u\]

if \(p \, q\) is a \(\theta, \gamma\)-data structure

and \(u \, v\) is a \(\gamma\)-data structure

and \(\theta_1 = \theta \cap \text{ftv}(p)\) and \(\theta_2 = \theta \setminus \theta_1\)

\[(\theta p \rightarrow s) \, u > \, [y] \, y \rightarrow y\]

if \(p\) is a \(\theta, \gamma\)-matchable form

and \(u\) is a \(\gamma\)-matchable form

\[(\theta p \rightarrow s) \, u > \, \text{undefined, otherwise.}\]
Some slogans

Interestingly, the types are essentially those of System F, the terms are not so different from those of ρ-calculus, and the proof techniques are all standard. What has changed is the viewpoint.

• Patterns are first-class
• Data structures are either atoms or compounds.
• Special cases have special types
Collaborations

1. Freeman Huang, Barry Jay, and David Skillicorn. Programming with heterogeneous structures: Manipulating xml data using **bondi**. (ACSC2006)

3. Barry Jay and Delia Kesner. Pure pattern calculus. (ESOP’06) and revised version.

5. Clara Murdaca and Barry Jay. A relational account of objects (ACSC’06).
Some other papers

1. C.B. Jay. Distinguishing data structures and functions: the constructor calculus and functorial types (TLCA’01).

2. C.B. Jay. Methods as pattern-matching functions. (FOOL’04)

5. C.B. Jay. Type variables simplify sub-typing. (HOR’06. plus recent submissions on: typed pattern calculus, strong normalisation, and concurrent pattern calculus.

Note: my web-site is not quite up-to-date.
Languages

and ongoing work.
A patterned worldview

XML → functional → generic functional

classes+relations ← patterned → generic Java

query ← imperative

object-oriented