
The simply typed rewriting calculus

Horatiu Cirstea

LORIA and UHP
Nancy, France

Email: Horatiu.Cirstea@loria.fr

Claude Kirchner

LORIA and INRIA
Nancy, France

Email: Claude.Kirchner@loria.fr

Abstract

The rewriting calculus is a rule construction and application framework. As such it
embeds in a uniform way term rewriting and lambda-calculus. Since rule application
is an explicit object of the calculus, it allows us also to handle the set of results
explicitly.

We present a simply typed version of the rewriting calculus. With a good choice
of the type system, we show that the calculus is type preserving and terminating,
i.e. verifies the subject reduction and strong normalization properties.

1 Introduction

The rewriting calculus [CK99a,CK99b] is a general framework handling explic-
itly the three notions of rule formation, rule application and rule application
result. The rule formation constructor is denoted → and given two terms like
x+ s(y) and s(x+ y) it allows us to built the rewrite rule x+ s(y) → s(x+ y).
Applying the previous rewrite rule to the top position of the sum 3+2 is per-
formed using the application operator denoted []() (where 3 is an abbreviation
for s(s(s(0)))). The result of the application [x + s(y) → s(x + y)](3 + 2) is
the set {s(3 + 1)}. Why we handle sets of results could be understood simply
by the fact that rewriting may either fail or give several results. For example
when applying the previous rewrite rule on 0, the set of results is just the
empty set: [x + s(y) → s(x + y)](0) = ∅. If we assume furthermore the ad-
dition to be commutative, a rule application may lead to several terms like
in [x + s(y) → s(x + y)](3 + 2) = {s(3 + 1), s(2 + 2)}. All together, this so
called ρ-calculus, has his objects (the ρ-terms) built using rule formation, rule
application and sets, with no a priori restriction on the term formation.

It is of course important to provide a typed version of the calculus in order,
in particular, to insure termination of the evaluation of well-typed ρ-terms.
When dealing with the combination of term rewriting and λ-calculus, the first
such result was obtained in [GBT89] and [Oka89]. One of the originalities
of the ρ-calculus with respect to the previous approaches is that we consider
only one calculus by opposition to the situation where the two frameworks of
λ-calculus and rewriting are combined. We are here in a different situation
where rewriting (and not the normalization process) is treated at the same
level as λ-abstraction.

We have introduced and studied in [CK99b] the untyped rewriting calcu-
lus and we present here a simply typed version of it. We briefly present in
the next section the ρ-calculus and some of its properties. In Section 3 we
define the typed ρ-calculus. We then show the subject reduction property in
Section 4 as well as strong normalization of the typed calculus in Section 5.
The main ideas of the approach are the same as for λ-calculus but the two
main difficulties consist in the correct handling of the matching process and
the non-determinism of the calculus. This is allowed by the right definition of
the typing system and by the careful handling of term and context sets in the
proofs.

We use the same notations as in [CK99b] to which the reader is referred
for details and examples about the untyped ρ-calculus and its application on
the modeling of rewrite rules and strategies.

2 An informal presentation of the ρ-calculus

The ρ-calculus is defined by its five components: the syntax that makes precise
the formation of the objects manipulated by the calculus, the description of
the substitution application on terms, the matching algorithm used to bind
variables to their actual values, the evaluation rules describing the way the
calculus operates and the strategy guiding the application of the evaluation
rules.

The core of the object formation in the ρ-calculus relies on a first-order
signature together with rewrite rules formation, rule application and sets of
results. The substitution application is often described at the meta-level of the
calculus, except for explicit substitution frameworks. For the description of the
ρ-calculus that we give here, we use (higher-order) substitutions and not graft-
ing [DHK00], i.e. the application takes care of variable bindings and therefore
uses α-conversion. In the general case, we consider a higher-order matching,
but in practical cases it will be higher-order-pattern matching, or equational
matching, or simply syntactic matching. The evaluation rules mainly describe
the way a ρ-term is applied on another ρ-term and the the way sets are han-
dled. Depending on the strategy employed for guiding the evaluation rules,
we obtain different versions and therefore different properties for the calculus.

The rewriting calculus appears to be a natural way to express both term

2

rewriting as well as λ-terms and their evaluation. A beta-redex (λx.t u)
is nothing more than the ρ-term [x → t](u) (i.e. the application of the
rewrite rule x → t on the term u) and while the above beta-redex reduces
to {x/u}t, the corresponding ρ-redex reduces to {{x/u}t} where {x/u}t rep-
resents in both cases a higher order substitution application involving possible
α-conversions. The λ-calculus with patterns presented in [PJ87] can be given
a direct representation in the ρ-calculus. Let us consider, for example, the
λ-term λ(PAIR x y).x that selects the first element of a pair and the appli-
cation λ(PAIR x y).x (PAIR a b) that evaluates to a. The representation
in the ρ-calculus of the first λ-term is Pair(x, y) → x, where Pair is the
function symbol that corresponds to the symbol PAIR, and the application
[Pair(x, y) → x](Pair(a, b)) ρ-evaluates to {{x/a, y/b}x}, that is to {a}.

When building ρ-abstractions, i.e. rewrite rules, there is a priori no re-
striction. The application, in term rewriting, of a rewrite rule f(y) → g(a, y)
to a term f(b) is represented by the ρ-term [f(y) → g(a, y)](f(b)) that eval-
uates to {g(a, b)}. But we may also rewrite an object into a rewrite rule like
in the application [x → (f(y) → g(x, y))](a) that evaluates to the single-
ton {f(y) → g(a, y)}. In this case the variable x is free in the rewrite rule
f(y) → g(x, y) but is bound in the rule x → (f(y) → g(x, y)). More generally,
the object formation in ρ-calculus is unconstrained. Thus, the application of
the rule b → c after the rule a → b on the term a is written [b → c]([a → b](a))
and as expected, the evaluation mechanism will produce first [b → c]({b}) and
then {c}. It also allows us to make use in an explicit and direct way of non-
terminating or non-confluent (equational) rewrite systems. For example the
application of the rule a → a on the term a (i.e. [a → a](a)) terminates
since it is applied only once and does not create a new redex. The set terms
allow us to represent the non-deterministic application of a set of rules. For
example, the ρ-term [{a → b, a → c}](a) represents the non-deterministic ap-
plication of one of the two rules and the result of the evaluation is the set
{b, c} representing the non-deterministic choice between the two results.

A ρ-calculus term contains all the (rewrite rule) information needed for its
evaluation. This is also the case for λ-calculus but it is quite different from
the usual way term rewrite relations are defined.

The rewrite relation generated by a rewrite system R = {l1 → r1, . . . ,
ln → rn} is defined as the smallest transitive relation stable by context and
substitution and containing (l1, r1), . . . , (ln, rn). For example, if we consider
the rewrite system R = {a → f(a)}, then the relation contains (a, f(a)),
(a, f(f(a))), (f(a), f(f(a))), . . . and one says that the derivation a → f(a) →
f(f(a)) → . . . is generated by R.

In ρ-calculus the situation is different since ρ-evaluation will reduce a given
ρ-term in which all the rewriting information is explicit. It is customary to
say that the rewrite system a → a is not terminating because it generates
the derivation a → a → a → In ρ-calculus the same infinite derivation
should be explicitly built (for example using an iterator) and all the evalu-

3

ation information should be present in the starting term like in the ρ-term
[a → a]([a → a]([a → a](a))) that could be used as a ρ-representation whose
evaluation corresponds to the three steps derivation a → a → a → a.

There is thus a big difference between the way one can define rewrite deriva-
tions generated by a rewrite system and their representation in ρ-calculus: in
the first case the derivation construction is implicit and left at the meta-level,
in the later case, all rewrite steps should be explicitly built.

To summarize, in ρ-calculus abstraction is handled via the arrow binary
operator, matching is used as the parameter passing mechanism, substitution
takes care of variable bindings and results sets are handled explicitly. Thus,
the ρ-calculus integrates the matching power of rewriting and the higher-order
functionality of λ-calculus and handles explicitly the non-determinism in the
sense of sets of results.

The ρ-calculus is not confluent in the general case and the use of sets for
representing the reduction results is the main cause of non-confluence. The
confluence can be recovered if the evaluation rules of ρ-calculus are guided
by an appropriate strategy [Cir00] handling properly the propagation of the
failure (i.e. ∅) and the sets with more than one element.

The ρ-calculus is both conceptually simple as well as very expressive. This
allowed us to represent the terms and reductions from λ-calculus and con-
ditional rewriting. Using appropriate ρ-definitions for term traversal opera-
tors and a fixed point operator we are able to apply repeatedly a (set of)
rewrite rule(s) and consequently to define a ρ-term representing the normal-
ization according to a set of rewrite rules. Starting from this representation we
showed how the ρ-calculus [CK99a,Cir00] can be used to give a semantics to
ELAN [KKV93,BKK+98] 1 rules and strategies. This could be applied to many
other frameworks, including rewrite based languages like ASF+SDF [Deu96],
ML [Mil84], Maude [CELM96], CafeOBJ [FN97] or Stratego [Vis99] but also
production systems and non-deterministic transition systems.

In the context of rewriting logic [Mes92], proof terms are a subset of ρ-terms
but there exist ρ-terms that do not correspond to any proof in rewriting logic.
This extends the classical representation of proof terms by λ-terms used in
logical frameworks by a representation using ρ-terms, therefore permitting
us to use matching and non-determinism in the description of tactics and
tacticals.

3 The typed ρ-calculus

The classical notations and definitions from this paper are inspired from those
used for the typed λ-calculus used in [Hin97] and [HS86].

1 A detailed description of ELAN can be found at http://elan.loria.fr/.

4

3.1 Syntax of the typed ρ-calculus

Let us consider a set K of atomic types K1, K2, . . . and the set of types induc-
tively defined by:

• each atomic type is a type,

• if A and B are types, then A � B is a type,

The arrow of type definitions associates to right and thus a type of the form
A1 � A2 � . . . � An is an abbreviation for A1 � (A2 � (. . . � An) . . .).

The atomic types are intended to denote a particular set like, for example,
the naturals or the booleans. The compound types of the form A � B are
intended to denote the set of ρ-terms that can be applied to ρ-terms of type
A giving as result ρ-terms of type B. Indeed, we also call strategy a ρ-term of
compound type.

Definition 3.1 For a type A, a typed variable is denoted x : A and we say
that the variable x has the type A. A context is a set of typed variables.
The assignments x : A from a context are also called variable type definitions
(assignments).

Definition 3.2 We consider X a set of variables and F =
⋃

mFm a set of
ranked first order function symbols possibly annotated with their rank. We
denote by T (F ,X) the set of first order terms built on F using the variables
in X . If we denote by K any atomic type, then the syntax of the simply
typed ρ∅-calculus is defined recursively by the following context-free grammar:

Types T ::= K | T � T

Contexts E ::= x : T | E · . . . · E

Terms t ::= x | f(t, . . . , t) | {t, . . . , t} | u[[E]] → t | t

where x ∈ X , u ∈ T (F ,X) and f ∈ F .

The set containing no elements (i.e. {}) is also denoted by ∅. The contexts
E1 · . . . · En with n = 0 are represented by ∅. A context E restricted to the
set of variables of a term t is denoted by E|t.

The local context E of a rewrite rule u[[E]] → t can contain any variables but
we will see that the local context of a well-typed rewrite rule should contain
exactly the typed variables concerned by the abstraction, i.e. the free variables
of u.

For disambiguation purposes each symbol function could be annotated
with its rank but when it is clear from the context this annotation is omitted.

If A1, . . . , An, A are types we denote by FA1×...×An�A the set of func-
tion symbols taking n arguments of type Ai and giving as result a term
of type A. When a function symbol f belongs to such a set we denote
it by f ∈ FA1×...×An�A. We overload the function symbols and consider
for any symbol f ∈ F that if f ∈ FA1×...×An�A and f ∈ FB1×...×Bn�B

then we also have the inclusions f ∈ F(A1�B1)×...×(An�Bn)�(A�B) as well as

5

f ∈ F(B1�A1)×...×(Bn�An)�(B�A). Additionally, if we have one of the ranks
f ∈ F(A1�B1)×...×(An�Bn)�(A�B) or f ∈ F(B1�A1)×...×(Bn�An)�(B�A) then
f ∈ FA1×...×An�A and f ∈ FB1×...×Bn�B. The reason for this overloading will
become apparent in the evaluation rule Congruence presented in Figure 3
where the function symbols with the same name should have different ranks
in order to obtain well-typed terms and type preservation.

Definition 3.3 The set of free variables of a ρ-term t is denoted by FV (t)
and is defined by:

(i) if t = x then FV (t) = {x},
(ii) if t = {u1, . . . , un} then FV (t) =

⋃
i=1,...,n FV (ui),

(iii) if t = f(u1, . . . , un) then FV (t) =
⋃

i=1,...,n FV (ui),

(iv) if t = [u](v) then FV (t) = FV (u) ∪ FV (v),

(v) if t = u[[E]] → v then FV (t) = FV (v) \ FV (u).

The bound variables of a rewrite rule are the free variables of its left-hand
side.

Definition 3.4 We say that a context is consistent if it does not contain two
different variable type definitions for the same variable.

3.2 The typing rules of the ρ-calculus

The typing rules of the calculus are presented in Figure 1 where all the contexts
are supposed to be consistent.

Definition 3.5 Given a formula E ` t : A deduced using the typing rules of
the ρ-calculus and a context E ′ such that E ⊆ E ′ we say that the term t is
typeable (or well-typed) and has the type A in the context E ′ and we denote it
by E ′ ` t : A. We say that a term t is typeable in a context E ′ if there exists
a type A such that t has the type A in the context E ′. A term t is typeable if
there exists a context in which t is typeable.

From the rule Op one can notice that the type of a term with a first
order head symbol depends on the rank of the symbol and on the types of its
arguments. We should point out that the typing rule Op works for constants
(ground first order terms without arguments) as well and thus, if a ∈ FA then
∅ ` a : A.

The rule Set says that a set of terms is well-typed if all its elements have
the same type. The empty set can be given any type.

When typing a rewrite rule l → r using the typing rule Rule, we consider
the fact that the free variables from the right-hand side of the rule are bound
by the free variables from the left-hand side. Due to this strong relationship
between the variables with the same name from the two sides of the rewrite
rule, the same context (E|l) should be used in order to give types to these
variables. Furthermore, since in the ρ∅-calculus the left-hand side of a rewrite

6

V ar E ` x : A if x : A ⊆ E

Rule
E ` l : A E|l · F ` r : B
F ` (l[[E|l]] → r) : A � B

App E ` u : A � B E ` v : A
E ` [u](v) : B

Op E ` t1 : A1 . . . E ` tn : An

E ` f(t1, . . . , tn) : A
if f ∈ FA1×...×An�A

Set E ` t1 : A . . . E ` tn : A
E ` {t1, . . . , tn} : A

Empty E ` ∅ : A for any type A

Fig. 1. Typing rules for the ρ-calculus

rule l → t is always a first-order term, the variables of the term l are exactly
the free variables of l and therefore, the bound variables of the rewrite rule.
Thus, the context allowing us to type a rewrite rule l → t does not have to
include these typed variables (i.e E|l) but should make precise the types of
the free variables of r that are not free in l (i.e F).

3.3 Discussion on the typing of rewrite rules

One should notice that, according to Definition 3.5, the set of free variables of
the left-hand side of a rewrite rule l → r is not necessarily the same as the set
of typed variables from the context allowing us to type the term l. This latter
context can contain variables that do not belong to l but free in r and thus,
variables that should be in the global context used for typing the rewrite rule.
In the typing rule Rule, the restriction of the context E to the set of variables
of l avoids the elimination of variables that are not free in l and thus, not
bound in the rule l → r, from the context used for typing this rewrite rule.

Suppose, for example, that in the typing rule Rule the context E|l is
replaced by E:

Rule′ E ` l : A E · F ` r : B
F ` (l[[E]] → r) : A � B

Using this new rule we can infer ∅ ` x[[x:A·y:A]] → y : A � A and if
a ∈ FA we obtain ∅ ` [x[[x:A·y:A]] → y](a) : A. We will see that this latter
application reduces in the ρ-calculus to {y} and it is obvious that we cannot

7

infer ∅ ` {y} : A and thus, the types are not preserved by reduction.

We can try to simplify the typing rule Rule and do not eliminate the typed
variables of the left-hand side from the context of the rewrite rule and use the
typing rule:

Rule′′ E ` l : A F ` r : B
F ` (l[[E]] → r) : A � B

In this case we should impose an explicit consistence condition on the
context E · F . If this condition is not satisfied we can obtain bound variables
in the right-hand side of a rewrite rule that do not have the same type as the
corresponding ones from the left-hand side of the respective rewrite rule.

For example, if we consider x : A ` x : A and x : B ` x : B then, by using
the typing rule Rule′′, we can infer x : B ` x[[x:A]] → x : A → B and thus, we
obtain the term x[[x:A]] → x that we obviously do not want to have the type
A → B but A → A.

On the other hand, the consistence of the context E ·F is a too restrictive
condition that would not allow us to type all the ρ-terms well-typed according
to the typing rules in Figure 1.

Let us consider a function symbol f ∈ FB�A. We can easily obtain x :
A ` x[[x:A]] → x : A → A but, although we have x : B ` f(x) : A, the term
[x[[x:A]] → x](f(x)) cannot be typed in the context x : B due to the inconsistence
of the context x : A · x : B. Though, the term [y[[y:A]] → y](f(x)) is well-typed
in the context x : B and we can say that all terms typed using the rules in
Figure 1 can be typed modulo α-conversion using an approach based on the
typing rule Rule′′.

Additionally, since according to the rule Rule′′, the context of a rewrite
rule contains the typed variables of its left-hand side, we do not have to store
these variables and the typing rule becomes:

Rule′′′ F ` l : A F ` r : B
F ` (l → r) : A � B

Although, the initial typing rule Rule is slightly more difficult to handle
we have prefered this approach that do not impose any restrictions on the
terms that can be well-typed.

3.4 Typed substitutions

At this moment we should define typed substitutions and the way they apply
to a typed term.

The typed substitutions are defined in the same way as the untyped substi-
tutions (not to be confused with grafting or first order substitutions) but
the types of the variables from the domain of the substitution are given
explicitly. If A1, . . . , An are types, a typed substitution has the form σ =
{x1 : A1/t1, . . . , xn : An/tn} with xi ∈ X and ti typed ρ-terms. The domain
of the substitution σ is defined as usually: Dom(σ) = {x1 : A1, . . . , xn : An}.

8

Definition 3.6 A typed substitution σ = {x1 : A1/t1, . . . , xn : An/tn} is well-
typed in a context E and we denote it by E ` σ if for all typed variables
xi : Ai ∈ Dom(σ) we have E ` ti : Ai.

The application of a well-typed substitution on a typed term is defined
similarly as for the untyped case up to the condition that the domain of the
substitution and the context of the term should be consistent:

Lemma 3.7 Given a term t, a typed substitution σ and the context E such
that E ` σ and Dom(σ) · E ` t : B, with Dom(σ) · E consistent, then
E ` σt : B.

3.5 Typed matching

Computing the matching substitutions from a ρ-term t to a ρ-term t′ is an
important parameter of the calculus. For the purpose of this paper we define
matching problems:

Definition 3.8 For a given theory T over ρ-terms, a T -match-equation is a
formula of the form E ` t �?

T E ′ ` t′ where t and t′ are well-typed ρ-terms in
the respective contexts E and E ′. A well-typed substitution σ in a context
E ′ is a solution of the T -match-equation E ` t �?

T E ′ ` t′ if T |= σ(t) = t′.
A T -matching system is a conjunction of T -match-equations. A substitution
is a solution of a T -matching system P if it is a solution of all the T -match-
equations in P . We denote by F a T -matching system without solution.
We define the function Solution on a T -matching system P as returning the
set of all T -matches of P .

According to the previous definition, if the substitution σ is a solution of
the match-equation E ` t �?

∅ E ′ ` t′ and t ∈ T (F ,X) then Dom(σ) ⊆ E.

For example when T is empty, the syntactic matching substitution from
t to t′, when it exists, is unique and can be computed, in the untyped case,
by a simple recursive algorithm given for example by G. Huet [Hue76]. It can
also be computed by the following set of rules SyntacticMatching where the
symbol ∧ is assumed to be associative and commutative.

We denote Match(t, t′, E, E ′) the substitution obtained by matching the
term t that is well-typed in the context E against the term t′ that is well-typed
in the context E ′.

Proposition 3.9 The normal form with regards to the matching rules in the
set SyntacticMatching of any matching problem t �?

∅ t′ exists and is unique.
After removing from the normal form any duplicated match-equation, if the
resulting system is:

(i) F, then there is no match from t to t′ and we haveMatch(t, t′, E, E ′) = ∅,
(ii) of the form

∧
i∈I xi �?

∅ t′i with I 6= ∅, then the substitution σ = {xi/t
′
i}i∈I

is the unique match from t to t′. If E ` xi : Ai and E ′ ` t′i : Ai then

9

Decomposition (f(t1, . . . , tn) �?
∅ f(t′1, . . . , t

′
n)) ∧ P 7→7→∧

i=1...n ti �?
∅ t′i ∧ P

SymbolClash (f(t1, . . . , tn) �?
∅ g(t′1, . . . , t

′
m)) ∧ P 7→7→ F

if f 6= g

MergingClash (x �?
∅ t) ∧ (x �?

∅ t′) ∧ P 7→7→ F

if t 6= t′

V arClash (f(t1, . . . , tn) �?
∅ x) ∧ P 7→7→ F

if x ∈ X

Fig. 2. SyntacticMatching - Rules for syntactic matching

Match(t, t′, E, E ′) = {{xi : Ai/t
′
i}i∈I}. If for some i ∈ I we have a

variable E ` xi : Ai and E ′ ` t′i : Bi with Ai 6= Bi then we obtain
Match(t, t′, E, E ′) = ∅.

Notice that we do not remove the trivial match-equations of the form
x �?

∅ x from the system but we check the equality of the types of the variable
x from the two sides in the corresponding contexts.

We can, of course, integrate the type constraints in the matching rules but
keeping them separate allows us to use the same set of matching rules in the
typed and untyped approaches.

The function Solution in the typed and syntactic case is defined by

Solution(E ` t �?
∅ E ′ ` t′) = Match(t, t′, E, E ′)

When the contexts E, E ′ of the terms t, t′ are clear we omit them and we
abbreviate the function Solution(E ` t �?

∅ E ′ ` t′) by Solution(t �?
∅ t′).

3.6 The evaluation rules of the typed ρ-calculus

The evaluation rules of the untyped ρ∅-calculus from [CK99a] enriched with
the typing information are presented in Figure 3. The rules that are modified
are the ones handling rewrite rules: Fire and SwitchR.

The typed ρT -calculus (the ρ-calculus with a given a matching theory
T) is obtained similarly from the untyped ρT -calculus but the typing system
is more technically involved and is not considered in this paper. The type
system dealing with rewrite rules with a left-hand side more elaborated than
a first order term is slightly more complicated and is presented in [Cir00]. We
conjecture that a similar approach can be used for the ρT -calculus using an

10

equational matching theory T that satisfies certain conditions.

Fire [l[[E]] → r](t) =⇒ {σr}

if the rule is applied in context F

where {σ} = Solution(E ` l �?
∅ F ` t)

Congruence [f(u1, . . . , un)](f(v1, . . . , vn)) =⇒

{f([u1](v1), . . . , [un](vn))}

Congruence fail [f(u1, . . . , un)](g(v1, . . . , vm)) =⇒ ∅

Distrib [{u1, . . . , un}](v) =⇒

{[u1](v), . . . , [un](v)}

Batch [v]({u1, . . . , un}) =⇒

{[v](u1), . . . , [v](un)}

SwitchR u[[E]] → {v1, . . . , vn} =⇒

{u[[E]] → vn, . . . , u[[E]] → vn}

OpOnSet f(v1, . . . , {u1, . . . , um}, . . . , vn) =⇒

{f(v1, . . . , u1, . . . , vn), . . . , f(v1, . . . , um, . . . , vn)}

Flat {u1, . . . , {v1, . . . , vn}, . . . , um} =⇒

{u1, . . . , v1, . . . , vn, . . . , um}

Fig. 3. The evaluation rules of the typed ρT -calculus

As we have already mentioned, the interpretation of the function symbols
is overloaded in the sense of having several ranks. If in the left-hand side of
the rule Congruence the first f has the rank f ∈ F(A1�B1)×...×(An�Bn)�(A�B)

and the second one f ∈ FA1×...×An�A then the symbol f from the right-hand
side of the evaluation rule has the rank f ∈ FB1×...×Bn�B. The arguments of a

11

term built using the first f are rewrite rules (or some other terms of compound
type) that are applied to the arguments of a term built using the second f
and the overloading of the symbol f is obviously needed in order to correctly
type these applications.

The Congruence rules are redundant with respect to Fire. Indeed, one
could notice that the application of a term f(t1, . . . , tn) on another ρ-term
t (i.e. [f(t1, . . . , tn)](t)) evaluates, using the evaluation rules Congruence
and Congruence fail, to the same term as the application of the ρ-rewrite
rule f(x1, . . . , xn) → f([t1](x1), . . . , [tn](xn)) on the term t (in a formal way,
[f(x1, . . . , xn) → f([t1](x1), . . . , [tn](xn))](t)) using the evaluation rule Fire.
Therefore, the Congruence rules represent the η expansion of the ρ-calculus
that would be defined by:

Eta f(t1, . . . , tn) 7→7→ f(x1, . . . , xn) → f([t1](x1), . . . , [tn](xn))

that applied in the particular case of a constant a leads to

a =⇒ x → [a](x).

There are mainly two properties that we want to prove for the typed calcu-
lus. First, we prove that the typed ρ-calculus preserves types under reduction,
property usually called subject reduction. Second, we prove that in the typed
ρ-calculus there are no infinite reductions. Comparing to the proofs from
similar approaches, like the λ-calculus, we have to show that the handling of
the non-determinism represented by sets of terms is done properly. In the
ρ-calculus we have singletons corresponding to a deterministic result, like in
the λ-calculus, but we also deal explicitly with the possible failure represented
by ∅ and with non-deterministic results represented by sets with more than
one element.

This latter property does not hold in the untyped calculus. In the untyped
ρ-calculus there are terms that do not have a normal form:

Example 3.10 The term ωω = [x → x](x → x) reduces successively
to

[x → x](x → x) =⇒ρ

{x/(x → x)}x
4= {[x → x](x → x)} =⇒ρ

. . .

{. . . {[x → x](x → x)} . . .} =⇒ρ . . .

In the typed ρ-calculus the types of the bound variables should be given
explicitly and the corresponding ρ-term [x[[x:A]] → x](x[[x:A′]] → x) is
not well-typed independently of the type of the variable x from the contexts
of the left-hand side of the rewrite rules. This follows immediately from the
typing rule App that needs on one hand the type B � C for the first x of the
application and on the other hand the type B for the second x. But this is
obviously impossible since the two variables x from the right-hand side of the

12

rule should have the type of the variable x from the left-hand side (A or A′)
in order to type the rewrite rule x[[x:A]] → x using the typing rule Rule.

Example 3.11 Let us consider the symbol cons used for constructing the
lists and nil the symbol representing an empty set.

When building integer lists, cons ∈ FInt×ListInt�ListInt and nil ∈ ListInt.
But the same symbols can be used for building boolean lists and in this case
cons ∈ FBool×ListBool�ListBool and nil ∈ ListBool. According to our suppo-
sition, we also have cons ∈ F(Int�Bool)×(ListInt�ListBool)�(ListInt�ListBool) and
nil ∈ ListInt � ListBool.

Using the typing rule Op we obtain ∅ ` cons(1, nil) : ListInt and similarly
∅ ` cons(True, nil) : ListBool.

We can transform the integer lists into boolean lists by using the rewrite
rules 0 → False, 1 → True, 2 → True, . . . that, according to the typing rule
Rule, have the type Int � Bool in the empty context. For example, the list
cons(1, nil) can be transformed by applying the term cons(1 → True, nil). In
this latter term cons ∈ F(Int�Bool)×(ListInt�ListBool)�(ListInt�ListBool) and since
nil ∈ ListInt � ListBool, we have ∅ ` cons(1 → True, nil) : ListInt �
ListBool. We have thus obtained for cons(1 → True, nil) the type of a rewrite
rule transforming an integer list into a boolean list.

According to the typing rule App, we can type in the empty context the
application [cons(1 → True, nil)](cons(1, nil)) : ListBool. This term eventu-
ally reduces to {cons(True, nil)} that is of type ListBool by the typing rules
Op and Set.

4 Subject reduction

We show now that the typed ρ-calculus has the subject reduction property.

Theorem 4.1 For all ρ-terms a and a′, if a =⇒ρ a′ and E ` a : A, then
E ` a′ : A.

Proof (sketch): We inspect the evaluation rules of the typed ρ-calculus one
by one and we show that the left-hand side and the right-hand side of each
rule have the same type in a given context. For each evaluation rule of the
form lhs =⇒ rhs we show that if E ` lhs : A then E ` rhs : A.

Fire [l[[F |l]] → r](t) 7→7→ {σr}
if the rule is applied in context E
where {σ} = Solution(F ` l �?

∅ E ` t)

Let A such that E ` [l[[F |l]] → r](t) : A. Using the typing rule App we
infer that E ` t : B and E ` (l[[F |l]] → r) : B � A. By the typing rule
Rule we have F |l ` l : B and F |l · E ` r : A with F |l · E consistent. If σ is
the solution of (l �?

∅ t) then, according to the hypothesis on the matching,
E ` σ and Dom(σ) = F |l. Since F |l · E is consistent then Dom(σ) · E is
consistent and by Lemma 3.7, E ` σr : A. By the typing rule Set

13

E ` {σr} : A.
If the matching (l �?

∅ t) fails then the right-hand side ∅ satisfies the
property by the typing rule Empty.

Distrib [{u1, . . . , un}](t) 7→7→ {[u1](t), . . . , [un](t)}
Let A such that E ` [{u1, . . . , un}](t) : A. By the typing rule App we

infer E ` t : B and E ` {u1, . . . , un} : B � A. By the typing rule Set we
have E ` ui : B � A, i = 1, . . . , n and by applying the typing rule App n
times we obtain E ` [ui](t) : A, i = 1, . . . , n. Finally, the typing rule Set
leads to

E ` {[u1](t), . . . , [un](t)} : A.

Flat {u1, . . . , {v1, . . . , vn}, . . . , um} 7→7→ {u1, . . . , v1, . . . , vn, . . . , um}
Let A such that E ` {u1, . . . , {v1, . . . , vn}, . . . , um} : A. By the typing

rule Set we have E ` uj : A, j = 1, . . . ,m, and E ` {v1, . . . , vn} : A. By
the typing rule Set we obtain E ` vi : A, i = 1, . . . , n and finally, by the
typing rule Set we have

E ` {u1, . . . , v1, . . . , vn, . . . , um} : A.
The proof for the other rules is similar. 2

As we have pointed out in Section 3.6 the Congruence rules are redundant
with respect to Fire. We would like to obtain a similar equivalence at the
type level. Let us consider a function symbol f such that f ∈ FA1×...×An�A,
f ∈ FB1×...×Bn�B, f ∈ F(A1�B1)×...×(An�Bn)�(A�B).

Then we can type the term f(t1, . . . , tn) in a context E:

E ` t1 : A1 � B1 . . . E ` tn : An � Bn

E ` f(t1, . . . , tn) : A � B
Op

If we consider the term f(x1, . . . , xn)[[E′]] → f([t1](x1), . . . , [tn](xn)) with the
context E ′ = x1 : A1 · . . . · xn : An, then we obtain

E ′ ` x1 : A1 . . . E ′ ` xn : An

E ′ ` f(x1, . . . , xn) : A
Op,

E ′ · E ` ti : Ai � Bi E ′ · E ` xi : Ai

E ′ · E ` [ti](xi) : Bi
App,

E ′ · E ` [ti](xi) : Bi

E ′ · E ` f([t1](x1), . . . , [tn](xn)) : B
Op

and by the typing rule Rule
E ′ ` f(x1, . . . , xn) : A E ′ · E ` f([t1](x1), . . . , [tn](xn)) : B

E ` f(x1, . . . , xn)[[E′]] → f([t1](x1), . . . , [tn](xn)) : A � B

Using the previous deductions we can conclude that
E ′ ` xi : Ai E ` ti : Ai � Bi i = 1, . . . , n

E ` f(x1, . . . , xn)[[E′]] → f([t1](x1), . . . , [tn](xn)) : A � B

We have thus induced the same type for a term f(t1, . . . , tn) and for the
corresponding extended term f(x1, . . . , xn)[[E′]] → f([t1](x1), . . . , [tn](xn)) in the
same context E. One should notice that in the second term we should define
explicitly in the context of the left-hand side of the rewrite rule the types of

14

the bound variables of the rule.

This shows that our choice for the type system is reasonably good since
consistent with the implicit extensionality rule.

5 Strong normalization

We concentrate now on the proof of the strong normalization of well-typed
ρ-terms. This property guarantees the existence of a normal form and when
the ρ-calculus is confluent we can conclude the uniqueness of normal forms.

Definition 5.1 A typed or untyped ρ-term t is strongly normalizing (SN)
with respect to a reduction relation, iff all reductions starting at t are finite.
The term is weakly normalizing iff it reduces to a normal form.

It is not surprising that, because of the relationship between the ρ-calculus
and the λ-calculus, our proof of the strong normalization of the ρ-calculus is
inspired from the proof of the strong normalization of the λ-calculus. There
are several methods for proving the strong normalization of the λ-calculus.
One is called internalization and was first used by Gandy [Gan80]. Another
one is usually called reducibility and is based on the notions introduced by
Tait [Tai67]. The latter technique has been generalized in [Gir72] and [JO97].

In what follows we use the notations, definitions and the proof line from
[HS86] which is a variation of the Tait’s method. Comparing to this method,
in our approach we should handle properly the terms having a first order head
symbol and the set terms.

When the context E in which we type the terms is clear we omit it and in
this case we abbreviate E ` t : A by t : A.

Definition 5.2 We define the strong computability (SC) of a term t by in-
duction on the number of occurrences of type arrows ”�” in the type of
t:

a. a term of atomic type is SC iff it is SN,

b. a term t such that E ` t : A � B is SC iff, for every SC term u such that
E ` u : A, the term [t](u) with E ` [t](u) : B is SC.

The definition is extended for typed substitutions and we say that a sub-
stitution of the form {x1 : A1/u1, . . . , xn : An/un} is SC iff all terms ui are
SC.

The normalization proof is done in two steps. First we prove that every
typeable term that is SC is SN. Second we show that all typeable terms are
SC and we conclude that all typeable terms are SN.

Lemma 5.3 (every SC term is SN)

For all type A we have the following properties:

15

a. Given an atom t and the terms u1, . . . , un. If u1, . . . , un are SN then
[. . . [[t](u1)](u2) . . .](un) : A is SC.

b. Every SC term of type A is SN.

Lemma 5.4 Given the contexts F and E and the terms l, r and t such that
F ` l : A, F |l · E ` r : B and E ` t : A. We consider the substitution σ such
that {σ} =Solution(l �?

∅ t).

If the terms σr and l, t are SC, then the term [l[[F |l]] → r](t) is SC.

Lemma 5.5 (every typeable term is SC)

For every typed ρ-term t such that E ` t : B we have:

a. t is SC,

b. For all SC substitutions σj, j = 1, . . . ,m such that E ′ ` σj, the term
t∗ = σ1 . . . σmt with E ′ ` t∗ : B is SC, where E = Dom(σ1)·. . .·Dom(σm)·E ′.

Proof (sketch): Part (a) is the special case of (b) when σi, i = 1, . . . , n are
the identity substitution. We prove (b) by induction on the construction of
t and the more elaborate case deals with a rewrite rule t : B = t1[[F |t1]] → t2.

We have F ` t1 : A and F |t1 · E ` t2 : C and B = A � C. In this
case t∗ = t∗1 → t∗2 if we neglect changes in the bound variables. Due to the
definition of substitution application, t∗1 = t1.

We have to prove that for all SC terms u such that E ′ ` u : A, the term
[t∗](u) is SC or equivalently that [t1 → t∗2](u) is SC.

If the matching (t1 �?
∅ u) fails then the result is ∅ and the property holds

obviously.
We can easily prove that if l ∈ T (F ,X) and syntactic matching is con-

sidered then, for any SC terms l, t and substitution {µ} = Solution(l �?
∅ t)

we obtain that µ is SC.
We consider {µ} = Solution(t1 �?

∅ u) and according to the hypothesis
on the matching, E ′ ` µ and since t1 and u are SC then it follows that µ
is SC. By Lemma 3.7, F |t1 · E ′ ` t∗2 : C and since Dom(µ) = F |t1 then
E ′ ` µt∗2 : C. By induction hypothesis applied with m + 1 instead of m we
obtain that µt∗2 is SC and thus, by Lemma 5.4, [t∗](u) is SC. 2

Theorem 5.6 The typed ρ-calculus is strongly normalizing.

Proof: The result follows immediately by the Lemma 5.5 and Lemma 5.3.
2

6 Conclusion

We have shown that using the right notion of types and contexts, the simply
typed ρ∅-calculus is type preserving and normalizing. Together with the con-
fluence of this calculus, obtained under specific restrictions of the evaluation
strategy [CK99b], this shows that despite its increased expressive capabilities
this framework still preserves the main properties. This could be extended to

16

ρT -calculus where the theory T is equational and has a decidable matching
problem.

Our next goals are to study more elaborated type systems allowing us in
particular object oriented as well as polymorphism features.

The untyped ρ-calculus has been used to give a semantics to the language
ELAN and this approach can be smoothly extended to a representation of the
ELAN typed rewrite rules and strategies [Bor98] in the typed ρ-calculus.

We have recently proposed a new presentation of the ρ-calculus [CKL00] al-
lowing us to encode two major object-calculi [AC96,FHM94] in a very natural
and simple way. This approach has been presented in an untyped context but
we are also exploring a more elaborated and less restricitive type system than
the one presented in this paper, allowing in particular to type self-applications.

References

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.

[BKK+98] P. Borovanský, C. Kirchner, H. Kirchner, P. E. Moreau, and
C. Ringeissen. An overview of elan. In C. Kirchner and H. Kirchner,
editors, Proceedings of the second International Workshop on Rewriting
Logic and Applications, volume 15, Pont-à-Mousson (France), September
1998. Electronic Notes in Theoretical Computer Science.

[Bor98] P. Borovanský. Le contrôle de la réécriture: étude et implantation d’un
formalisme de stratégies. Thèse de Doctorat d’Université, Université
Henri Poincaré – Nancy 1, France, October 1998.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
In J. Meseguer, editor, Proceedings of the first international workshop
on rewriting logic, volume 4, Asilomar (California), September 1996.
Electronic Notes in Theoretical Computer Science.

[Cir00] H. Cirstea. Le Rho Calcul: Fondements et Applications. PhD thesis,
Universié Henri Poincaré - Nancy I, 2000. to appear.

[CK99a] H. Cirstea and C. Kirchner. Combining higher-order and first-order
computation using ρ-calculus: Towards a semantics of ELAN. In
D. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems
2, Research Studies, ISBN 0863802524, pages 95–120. Wiley, 1999.

[CK99b] H. Cirstea and C. Kirchner. An introduction to the rewriting calculus.
Research Report RR-3818, INRIA, December 1999.

[CKL00] H. Cirstea, C. Kirchner, and L. Liquori. Matching power. July 2000.
Submitted.

[Deu96] A. Deursen. An Overview of ASF+SDF. In Language Prototyping, pages
1–31. World Scientific, 1996. ISBN 981-02-2732-9.

17

[DHK00] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via
explicit substitutions. Information and Computation, 157(1/2):183–235,
2000.

[FHM94] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects
and Method Specializatio n. Nordic Journal of Computing, 1(1):3–37,
1994.

[FN97] K. Futatsugi and A. Nakagawa. An overview of CAFE specification
environment – an algebraic approach for creating, verifying, and
maintaining formal specifications over networks. In Proceedings of the
1st IEEE Int. Conference on Formal Engineering Methods, 1997.

[Gan80] R. Gandy. Proof of strong normalisation. In J. P. Seldin and J. R.
Hindley, editors, Essays on Combinatory Logic, Lambda Calculus, and
Formalism. Academic Press inc., New York (NY, USA), 1980.

[GBT89] J. Gallier and V. Breazu-Tannen. Polymorphic rewriting conserves
algebraic strong normalization and confluence. In 16th Colloquium
Automata, Languages and Programming, volume 372 of Lecture Notes
in Computer Science, pages 137–150. Springer-Verlag, 1989.

[Gir72] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, June
1972.

[Hin97] J. R. Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University, 1997.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and Lambda-
calculus. Cambridge University, 1986.

[Hue76] G. Huet. Résolution d’equations dans les langages d’ordre 1,2, ...,ω.
Thèse de Doctorat d’Etat, Université de Paris 7 (France), 1976.

[JO97] J.-P. Jouannaud and M. Okada. Abstract data type systems. Theoretical
Computer Science, 173(2):349–391, 1997.

[KKV93] C. Kirchner, H. Kirchner, and M. Vittek. Implementing computational
systems with constraints. In P. Kanellakis, J.-L. Lassez, and V. Saraswat,
editors, Proceedings of the first Workshop on Principles and Practice of
Constraint Programming, Providence (R.I., USA), pages 166–175. Brown
University, 1993.

[Mes92] J. Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96:73–155, 1992.

[Mil84] R. Milner. A proposal for standard ML. In Proceedings ACM Conference
on LISP and Functional Programming, 1984.

[Oka89] M. Okada. Strong normalizability for the combined system of the typed
Lambda-calculus and an arbitrary convergent term rewrite system. In

18

Proceedings of the ACM-SIGSAM 1989 International Symposium on
Symbolic and Algebraic Computation, Portland (Oregon), pages 357–363.
ACM Press, July 1989. Report CRIN 89-R-220.

[PJ87] S. Peyton-Jones. The implementation of functional programming
languages. Prentice Hall, Inc., 1987.

[Tai67] W. Tait. Intensional interpretation of functionals of finite type I. The
Journal of Symbolic Logic, 32, 1967.

[Vis99] E. Visser. Strategic pattern matching. In P. Narendran and
M. Rusinowitch, editors, Rewriting Techniques and Applications
(RTA’99), volume 1631 of Lecture Notes in Computer Science, pages
30–44, Trento, Italy, July 1999. Springer-Verlag.

19

	Introduction
	An informal presentation of the -calculus
	The typed -calculus
	Syntax of the typed -calculus
	The typing rules of the -calculus
	Discussion on the typing of rewrite rules
	Typed substitutions
	Typed matching
	The evaluation rules of the typed -calculus

	Subject reduction
	Strong normalization
	Conclusion
	References

