
A Curry-Howard-De Bruijn Isomorphism Modulo

Benjamin Wack

LORIA & Université Henri Poincaré, Nancy, France
E-mail: Benjamin.Wack@loria.fr

Abstract

The rewriting calculus combines in a unified setting the
frameworks and capabilities of rewriting and λ-calculus.
Its most general typed version, called Pure Pattern Type
Systems (P 2TS) and adapted from Barendregt’s λ-cube, is
especially interesting from a logical point of view.

We show how to use a subset of P 2TS as a proof-
term language for natural deduction modulo, extending the
Curry-Howard-De Bruijn isomorphism for this class of log-
ical formalisms. The pattern matching featured in the cal-
culus allows us to model any congruence given by a term
rewriting system.

We characterize how proofs can be denoted by P 2TS
terms and we discuss the interest of our proof-term lan-
guage for the issue of cut elimination. Finally, we explore
some relations between our proof-term language and other
formalisms: extraction of λ-terms and/or rewrite rules from
P 2TS-terms, but also automated generation of proof-terms
by a rewriting-based language.

1 Introduction

From the early beginnings of proof assistants based on
type theory [7], it has been noticed that a high computa-
tional power would be needed in order to develop purpose-
ful proofs. The evolution of the Coq proof assistant [13]
is emblematic: its base formalism, the Calculus of Con-
structions introduced by Coquand and Huet [5], combines
the deductive flexibility of higher-order logic and dependent
types with the expressive power of polymorphism. It was
later extended with primitive inductive types by Coquand
and Paulin-Mohring [6] to get an enhanced convertibility
relation on types. Latest developments explore the intro-
duction of rewriting into the conversion relation [4], giving
more and more computational power to the system.

While all these works aim at increasing the automation
of an actual proof assistant, from a theoretical point of view,
the Poincaré principle [1] states that computation steps can
occur in a provable proposition without changing the proof

of this proposition. A way to formalize this principle is de-
duction modulo, proposed by Dowek, Hardin and Kirchner
[8], where the inference rules of a proof system (natural de-
duction for instance) are all defined modulo a congruence
on propositions. This congruence is usually given by a term
rewriting system.

In this work, we propose to relax the Poincaré princi-
ple, in the sense that we design proof-terms for deduction
modulo keeping track of the computation steps. The task
of proving can still be computer-assisted, so it does not
get more difficult. Furthermore, we obtain expressive proof
witnesses that enable us to strengthen the de Bruijn criterion
[1]: the proof-checking kernel can be smaller, hence easier
to verify by hand. Such enriched proof-terms are also likely
to help understanding the interaction between computation
and deduction.

The base language we use for proof-terms is an in-
stance of the Pure Pattern Type Systems (P 2TS) [2]. These
typed versions of the rewriting calculus1 embed the proof-
theoretic expressiveness of the λ-calculus together with ver-
satile pattern matching mechanisms. Strong normalization
of the simply-typed version was proved in [14], promoting
this type theory as a good candidate for a consistent logical
system featuring rewriting.

The main contributions of this work are:

• a proof of strong normalization for P 2TS with depen-
dent types;

• an enhanced matching algorithm in P 2TS allowing for
product types as patterns and dealing efficiently with
α-conversion;

• an extended Curry-Howard isomorphism between
proofs in deduction modulo and P 2TS terms;

The paper is organized as follows. In Sections 2 and 3,
we recall the main definitions and properties respectively

1An extensive bibliography on the rewriting calculus can be found at
http://rho.loria.fr

1

of deduction modulo and P 2TS, and we prove strong nor-
malization for P 2TS with dependent types. Section 4 de-
tails the representation of proofs in deduction modulo with
P 2TS-terms. In Sections 5 and 6, we explain the need
and the applications for two technical aspects of our proof-
terms, namely right-to-left use of rewrite rules and pattern
matching modulo α-conversion. Finally, in Section 7 we
formalize the isomorphism between terms and proofs and
we discuss the issue of cut elimination; in Section 8 we see
how we can relate our proof-terms with other formalisms.

2 Deduction modulo

Deduction modulo was introduced by Dowek, Hardin
and Kirchner as a way to remove computational arguments
from proofs by reasoning modulo a congruence on proposi-
tions [8]. In this paper, we will focus on a version of natural
deduction modulo for intuitionistic first-order logic, so that
we can use the λ-calculus with dependent types embedded
into P 2TS.

2.1 Intuitionistic natural deduction modulo

Different presentations can be found for deduction mod-
ulo. Generally, one takes the usual deduction rules and adds
a side condition so that either the conclusion or a premise
can be converted.

Since our goal is to keep a precise account of computa-
tion steps, throughout this paper, we will consider an equiv-
alent presentation using the usual deduction rules (without
side conditions) and an explicit conversion rule (∼=). The
implicational fragment of intuitionistic first-order logic is
recalled in Fig. 1; the system can be extended with rules
for introduction and elimination of disjunction, conjunction,
existential quantification and falsehood.

All along this paper, the symbol ∼= will denote the con-
gruence we consider in deduction modulo.

Let us see two examples showing the use of deduction
modulo. In the following, the plain equality symbol = is a
predicate of arity 2.

Example 1 (A proof using conversion on terms) When
dealing with group theory, the properties of the neutral
element e are generally given as a bunch of propositions
like ∀x.(e∗x = x). However, we may consider that this is
more related to computing the value of an expression, and
reflect it in a congruence: e ∗ x ∼= x. With this setting, one
can prove that e is the only neutral element without using

Γ `∼= ϕ
(Ax)

if ϕ ∈ Γ

Γ, ϕ `∼= ψ

Γ `∼= ϕ ⇒ ψ
(⇒ I)

Γ `∼= ϕ⇒ ψ Γ `∼= ϕ

Γ `∼= ψ
(⇒ E)

Γ `∼= ϕ

Γ `∼= ∀x.ϕ
(∀I)

if x /∈ FV (Γ)

Γ `∼= ∀x.ϕ

Γ `∼= [t/x]ϕ
(∀E)

Γ `∼= ϕ

Γ `∼= ψ
(∼=)

if ϕ ∼= ψ

Figure 1. Natural deduction modulo

Leibniz equality axioms:

∀y.(y∗e′ = y) `∼= ∀y.(y∗e′ = y)
(Ax)

∀y.(y∗e′ = y) `∼= e∗e′ = e
(∀E)

∀y.(y∗e′ = y) `∼= e′ = e
(∼=) with e∗e′ ∼= e′

`∼= ∀y.(y∗e′ = y) ⇒ e′ = e
(⇒ I)

Example 2 (A proof using conversion on propositions)
Supposing we want to formalize Z with three constructors
0, p and s (resp. for predecessor and successor), we will
use a congruence on terms:

s(p(z)) ∼= z ∼= p(s(z))

but we may also define equality with a congruence on
propositions:

s(x)=y ∼= x=p(y) and p(x)=y ∼= x=s(y)

Those definitions allow us to prove the statement:

s(a)=s(b) `∼= s(a)=s(b)
(Ax)

s(a)=s(b) `∼= a=p(s(b))

(∼=) with s(a)=s(b)
∼= a=p(s(b))

s(a)=s(b) `∼= a=b
(∼=) with p(s(b)) ∼= b

`∼= s(a)=s(b) ⇒ a=b
(⇒ I)

The congruence ∼= is generally defined via a rewriting
system (R), the left-hand sides being either terms or atomic

2

propositions. The congruence ∼= is then defined as the re-
flexive, transitive, symmetric and contextual closure of the
rewriting relation 7→R. The two previous examples can be
presented respectively by the rewriting systems

e ∗ x → x

and

s(p(z)) → z
p(s(z)) → z
s(x) = y → x = p(y)
p(x) = y → x = s(y)

Both of the considered congruences are decidable. For the
first one, since the rewriting system is confluent and ter-
minating, the convertibility of two terms can be decided
by simply comparing their normal forms. The second one
is not confluent, making convertibility less immediate to
check (but possible, by completion of the rewriting system).

2.2 Proof-terms and cut elimination

To our knowledge, proof terms for deduction modulo
were studied only by Dowek and Werner in [9]. Their work
is strongly aimed at proving cut elimination. Therefore,
they do not use the rule (∼=), but have convertibility side
conditions on every rule, e.g. introduction of implication
becomes:

Γ, ϕ `∼= ψ

Γ `∼= χ
(⇒ I)

if χ ∼= ϕ⇒ ψ

As a consequence, their proof terms only keep track of
the deduction steps: congruence is always implicit, and
typechecking depends on a decision procedure for convert-
ibility of two propositions.

Definition 1 (λ-proof-terms) The implicative fragment is
characterized by the typing rules from Fig. 2.

Example 3 The inferences from examples 1 and 2 have re-
spective λ-proof-terms λα.(αe) and λα.α.

These proof-terms are suitable witnesses, in the sense
that they contain enough information for proof reconstruc-
tion whenever the congruence ∼= is decidable. Moreover,
they can be used for proving cut elimination for a broad
class of congruences. However, they are too abstract to
really represent proofs: for instance it is hard to convince
oneself that λα.α is a proof of s(x) = s(y) ⇒ x = y.

3 Pure Pattern Type Systems

P 2TS were introduced by Barthe, Cirstea, Kirchner and
Liquori in [2]. In this section, we recall the syntax ofP 2TS,
their evaluation rules and their type systems.

Γ `∼= α : ψ
(Ax) if α : ϕ ∈ Γ and ϕ ∼= ψ

Γ, α : ϕ `∼= π : ψ

Γ `∼= λα.π : χ
(⇒ I) if χ ∼= ϕ ⇒ ψ

Γ `∼= π : χ Γ `∼= π′ : ϕ

Γ `∼= ππ′ : ψ
(⇒ E) if χ ∼= ϕ ⇒ ψ

Γ `∼= π : ϕ

Γ `∼= λx.π : ψ
(∀I) if ψ ∼= ∀x.ϕ and x /∈ FV (Γ)

Γ `∼= π : ψ

Γ `∼= πt : [t/x]ϕ
(∀E) if ψ ∼= ∀x.ϕ

Figure 2. Proof-terms à la Dowek-Werner

3.1 P 2TS: dynamic semantics

Notations Syntactic equivalence of terms will be denoted
by ≡. If a substitution θ has domain X1 . . . Xn and
∀i, θ(Xi) ≡ Ai, we will also write it [A1/X1 . . . An/Xn].

We will assume that X,Y, Z are variables; A,B,C are
terms; P,Q are patterns; a, f, g are constants; Φ,Ψ are
types; Ξ is an atomic type. Moreover, we will use: θ for
a substitution; Γ,∆ for contexts; Σ for a signature.

The calculus The syntax of P 2TS extends that of the
typed λ-calculus with structures and patterns [2]. Several
choices can be made for the set of patterns P ; in Section
6, we will see that we need patterns to be either algebraic
terms or a certain class of product types.

Signatures Σ,∆ ::= ∅ | Σ, f : A

Contexts Γ ::= ∅ | Γ, X : A

Patterns P ⊆ A

Terms A ::= f | X | λ(P : ∆).A | Π(P : ∆).A
| [P �∆ A]A | AA | A;A

A term λ(P : ∆).A is an abstraction with pattern P ,
body A and context ∆. A term [P �∆ B]A is a de-
layed matching constraint with pattern P , body A, argu-
ment B and context ∆. A term AB is an application.
The usual algebraic notation of a term is currified, e.g.
f(A1, . . . , An)

4

= f A1 · · · An. A term (A;B) is called
a structure with elements A and B. A term Π(P : ∆).A is
a dependent product, and will be used as a type.
P 2TS feature pattern abstractions whose application re-

quires solving matching problems, which we will denote
P � A. A solution of P � A is a substitution θ(P�A)

such that Dom(θ(P�A)) = FV (P) and Pθ(P�A) = A.
As we will see in Section 6, since some patterns are product

3

(ρ) (λ(P : ∆).A)B →ρ [P �∆ B]A

(σ) [P �∆ B]A →σ Aθ(P�B) if ∃ θ(P�B)

(δ) (A;B)C →δ AC;BC

Figure 3. Top-level rules of P 2TS

types, the notion of free variables of P has to be defined
accordingly, and the considered equality is α-conversion.

Extending Church’s notation, the context ∆ in λ(P :
∆).B (resp. [P �∆ B]A or Π(P : ∆).B) contains the
type declarations of the free variables appearing in the pat-
tern P , i.e. Dom(∆) = FV (P).

The top-level rules are presented in Fig. 3. The most im-
portant is the (σ) rule, which consists in solving the match-
ing equation P � B and applying the obtained substitution
(if it exists) to the the term A. If no solution exists, the
(σ) rule is not fired and the term [P �∆ B]A is not re-
duced. As usually, 7→ρσδ denotes the congruent closure of
→ρ ∪ →σ ∪ →δ , and 7→→ρσδ (resp. =ρσδ) is defined as the
reflexive and transitive (resp. reflexive, symmetric and tran-
sitive) closure of 7→ρσδ .

3.2 P 2TS: static semantics

P 2TS were designed in order to provide a calculus with
pattern matching capabilities enjoying strongly normaliza-
tion. This is achieved by a richer type system integrating
patterns into types, reminiscent of a dependent types dis-
cipline. In Fig. 4, we give the main inference rules, taken
from [14]. For a detailed explanation of these rules, the
interested reader can refer to the alternative presentation of
[2]. We only recall here the main modifications with respect
to traditional Pure Type Systems.

• (Abs) is inspired by the abstraction typing rule for de-
pendent types, with the difference that the pattern P
appears in the Π-type;

• (Appl) types an application with a delayed matching
constraint, which may be resolved later using (Conv);

• (Match) is derived from (Appl) and (Abs) so that sub-
ject reduction holds;

• (MSort) and (Prod) regulate the formation of prod-
uct types, depending on the allowed couples (s1, s2).
They ensure that the pattern and the body of the prod-
uct are typable in the extended context Γ,∆.

Remark 1 (Product formation) Notice that s1 is a com-
mon sort for all the free variables of P , which ensures that
only arguments of sort s1 will be passed to a function typed
with a rule (s1, s2).

Σ,Γ ` A : Ψ Σ,Γ ` Φ : s Φ =ρσδ Ψ

Σ,Γ ` A : Φ
(Conv)

Σ,Γ,∆ ` A : Φ Σ,Γ ` Π(P : ∆).Φ : s

Σ,Γ ` λ(P : ∆).A : Π(P : ∆).Φ
(Abs)

Σ,Γ ` A : Π(P : ∆).Φ Σ,Γ ` [P �∆ B]Φ : s

Σ,Γ ` AB : [P �∆ B]Φ
(Appl)

Σ,Γ,∆ ` A : Φ Σ,Γ ` [P �∆ B]Φ : s

Σ,Γ ` [P �∆ B]A : [P �∆ B]Φ
(Match)

∀(X:Ψ) ∈ ∆, Σ,Γ,∆ ` Ψ : s1
Σ,Γ,∆ ` P : Ψ0 Σ,Γ,∆ ` Φ : s2

Σ,Γ ` Π(P : ∆).Φ : s2
(Prod)

∀(X:Ψ) ∈ ∆, Σ,Γ,∆ ` Ψ : s1
Σ,Γ,∆ ` P : Ψ0

Σ,Γ ` B : Ψ0 Σ,Γ,∆ ` Φ : s2

Σ,Γ ` [P �∆ B]Φ : s2
(MSort)

Figure 4. The typing rules of P 2TS

In [14], we proved strong normalization of the simply
typed calculus, using a reduction-preserving encoding from
P 2TS into System Fω:

Theorem 1 (Strong normalization of typable terms)
Every term typable using only the product rule (∗, ∗) is

strongly normalizing.

Since we will also use the product rule (∗,�) to type our
proof-terms, let us extend this result:

Theorem 2 (Strong normalization of ρP)
Every term typable using only the product rules (∗, ∗)

and (∗,�) is strongly normalizing.

Proof: Following the lines of [11], we can define a
type-erasure and reduction-preserving map from ρP -terms
to ρ�-terms. The full proof is in Appendix A. �

We will use the product rule (�, ∗) too, although in a
quite limited way. Since this rule introduces impredicativ-
ity in the system, it is significantly harder to prove normal-
ization; however, we conjecture that the encoding used for
theorem 1 can be extended to any Pure Pattern Type System,
the difficulty being essentially technical.

Conjecture 1 (Strong normalization of ρC)
Every term typable using the four product rules (∗, ∗),

(∗,�), (�, ∗) and (�,�) is strongly normalizing.

4

4 P 2TS proof terms for deduction modulo

Since P 2TS include the λ-calculus and permit to ex-
press rewrite rules, we will use them to define proof-terms
for deduction modulo, where the subterms inherited from
the λ-calculus will account for logical inference rules, and
the subterms featuring matching will track conversion steps.
In this section we make precise which class of ρ-terms we
will use.

4.1 An alternative type system

A problem arising when using dependent types to repre-
sent first-order logic is that a term A such that ` A : ∗ may
represent either a proposition or a set. For better readability,
we follow the approach proposed by Berardi [3] and imple-
mented in the Coq proof assistant [13]: we use three sorts
∗s, ∗p,�, where ∗s and ∗p are intended to represent respec-
tively sets and propositions. The sort hierarchy is now given
by the axioms ` ∗s : � and ` ∗p : �. The allowed product
rules for a simple type system are

{

(∗s, ∗s) , (∗s, ∗p) , (∗p, ∗p)
}

Finally, types depending on terms can be created using the
product rule (∗s,�) and terms depending on types require
the rule (�, ∗p).

Moreover, we will use the following the notational con-
ventions:

• ϕ, ψ, χ are such that ` ϕ : ∗p, i.e. they represent
propositions;

• µ, ν are such that ` µ : ∗s, i.e. they represent sets;

• variables α, β and terms π, π′ are such that ` α : ϕ :
∗p, i.e. they represent proofs;

• variables x, y and terms t, s are such that ` x : µ : ∗s,
i.e. they represent algebraic terms (and functions) of
first-order logic.

It is easy to see that type inhabitation and normalization
in this type system are equivalent to the ones in ρP , by the
erasure function ∗s 7→ ∗ and ∗p 7→ ∗. Some variants of
these PTS and morphisms between them have been stud-
ied by Geuvers [10]. Now we can explain how terms and
propositions of first-order logic are represented in P 2TS.

Definition 2 (First-order logic represented in P 2TS)
We can consider a many-sorted signature, whose sorts are
not to be mistaken for ∗s, ∗p and �.

• For each sort s of the signature we take an atomic type
µ such that ` µ : ∗s.

• For each variable x of sort s we take a variable x such
that ` x : µ.

• For each n-ary function f : s1, . . . , sn 7→ s
we take a constant symbol f such that ` f :
Πx1:µ1 . . .Πxn:µn.µ : ∗s

• For each n-ary predicate symbol p over s1× . . .×sn
we take a constant symbol p such that ` p :
Πx1:µ1 . . .Πxn:µn.∗p : �

Terms and propositions are then represented as follows:

JxK
4

= x

Jf(t1, . . . , tn)K
4

= f Jt1K . . . JtnK

Jp(t1, . . . , tn)K
4

= p Jt1K . . . JtnK

Jϕ ⇒ ψK
4

= Πα:JϕK.JψK where α is fresh

J∀x.ϕK
4

= Πx:µ.JϕK where µ is
the sort of x

It easy to see that for any term t of sort s we have ` JtK :
µ : ∗s and for any proposition ϕ we have ` JϕK : ∗p.

4.2 Congruence on propositions

To account for the conversion steps, we need a dedicated
operator Rew

p which will take a propositionϕ, a proof-term
of that proposition and apply a rewrite rule R to ϕ. Since
the pattern appears in the type of a rewrite rule R, we need
such an operator for each possible pattern l appearing in the
rewrite rules:

Rew
p
l : Πϕ: ∗p . ΠR:(Π(l:∗p).∗p) . Πα:ϕ . (Rϕ)

Given a proposition ϕ with proof π, the proposition ϕ′ ob-
tained by rewriting ϕ with a rule l → r has the proof-term
Rew

p
l ϕ (λl.r) π. Indeed, the type of this term is [l � ϕ]r,

which is convertible to ϕ′.

Each of the operators Rew
p
l is just a new constant to be

added to the signature Σ. If the term rewriting system R
defining the congruence ∼= is finite, then the signature re-
mains finite too.

Typing the operators Rew
p requires the use of two prod-

uct rules: (∗s,�) (for the type of R) and (�, ∗p) (for ab-
stracting on ϕ and R). Thus, we are working in the type
system ρP2, featuring dependent types and impredicativ-
ity of sort ∗p. Cut elimination results will hold only under
the assumption of strong normalization, which has not been
proved for this system; however, it is not our only concern
here. Alternatively, we could have defined an impredicative
version of Rew

p, parameterized not only by a pattern but by
a whole rewrite rule, losing some generality. However, as
we will see in the following subsection, impredicativity is
essential for dealing with a congruence on terms.

5

4.3 Congruence on terms

We have seen how to keep track of the application of a
rewrite rule at the top-level of a formula; in Section 5, we
will see that it is indeed sufficient for rewriting a proposition
at any position of a formula, by an appropriate expansion of
the logical inference.

However, when it comes to rewriting an algebraic term
in a formula (i.e. some argument of a predicate symbol p
occuring in the formula), we need a way to determine the
exact position where the rewrite rule has to be applied. We
achieve this by defining a kind of generalized Leibniz equal-
ity, where the proof of equality of two terms is replaced by
a rewrite rule:

Rew
s
l : Πϕ:(Π(y:µ).∗p) . Πx:µ . ΠR:(Π(l:µ).µ) .

Πα:ϕ(x) . (ϕ(Rx))

where ` l : µ. Then, given an algebraic term t that rewrites
to u at top-level using a rewrite rule l → r, given a proposi-
tion ϕ(t) with proof π, the proposition ϕ(u) has the proof-
term Rew

s
l ϕ t (λl.r) π. Indeed, the type of this term is

ϕ([l � t]r), which is convertible to ϕ(u).
The ability to take ϕ as an argument (using the product

rule (�, ∗p)) is essential: it allows one to apply a rewrite
rule to an algebraic term occuring at any position in the
proposition.

Example 4 The inferences from examples 1 and 2 have re-
spective ρ-proof-terms

λα.
(

Rew
s
e∗x

(

λy.(y=e)
)

(e ∗ e′)
(

λ(e∗x).x
)

(αe)
)

and

λα.

Rew
s
p(s(z))

(

λw.(a=w)
)

p(s(b))
(

λp(s(z)).z
)

(

Rew
p

s(x)=y

(

s(a)=s(b)
)

(

λ(s(x)=y).(x=p(y))
)

α

)

As a summary to this section, the P 2TS-terms we will
use are given by the grammar in Fig. 5. Notice that, while
this classification into algebraic terms and proof-terms is
implicitly based on the type system, not every term pro-
duced by the given grammar is well-typed. Now that we
have seen which proof-terms we will use, we can discuss
some technical aspects: the next two sections explain re-
spectively how we manipulate rewrite rules and which pat-
tern matching problems we solve.

5 Reversed rules

In this section we study extensively the application of
rules right-to-left: we show that it is sufficient for applica-
tion of rules below logical connectors, and that it enables to
express a form of proof genericity.

Algebraic terms t ::= f | x | t t′

Propositions ϕ ::= p | ϕ t | Πα:ϕ.ϕ | Πx:µ.ϕ
Rewrite rules R ::= λt.t | λϕ.ϕ
Proof-terms π ::= α | λα.π | π π′ | λx.π | π t |

Rew
p
l ϕ R π | Rew

s
l ϕ t R π

Figure 5. Proof-terms in P 2TS style

It can easily be seen that two-way application of rewrite
rules is unavoidable: in deduction modulo, if ψ is provable
and the only rule we have is ϕ → ψ, then ϕ is provable.
Now, supposing π is a proof-term for ψ, the only sensible
way to build a proof-term for ϕ is Rew

p
ψ ψ (λψ.ϕ) π, where

the rewrite rule ψ → ϕ appears.
Though two-way application of rewrite rules is surpris-

ing, for our purposes it remains perfectly sound: remember
we introduced a rewrite system in order to define a congru-
ence by symmetric and transitive closure. Moreover, there
can not be any problem related to termination (of the rewrit-
ing system) since a rewrite rule appears once in our proof-
terms for each of its applications. The decidability of the
congruence ∼= is not necessary anymore since we keep a
witness for each conversion, so we can even consider rewrit-
ing systems that are not confluent nor terminating.

5.1 Application of a rewrite rule inside a formula

In a proof-term Rew
p
l ϕ R π, the rewrite rule R is al-

ways applied to the head position of ϕ. Let us see how we
can deal with non-atomic formulas. Suppose we have the
following inference:

...

Γ `∼= ϕ1 ⇒ ϕ2

Γ `∼= ψ1 ⇒ ψ2

(∼=)

where the conversion corresponds to application of a rewrite
rule on one of the two subformulas. We can expand this
derivation into another one proving the same statement from
the same assumptions but using the conversion rule on a
subformula only.

• if ϕ1 7→R ψ1 and ϕ2 ≡ ψ2, we take

Γ, ψ1 `∼= ψ1

(Ax)

Γ, ψ1 `∼= ϕ1

(∼=)

...

Γ, ψ1 `∼= ϕ1 ⇒ ϕ2

Γ, ψ1 `∼= ϕ2

(⇒ E)

Γ `∼= ψ1 ⇒ ϕ2

(⇒ I)

6

• if ϕ2 7→R ψ2 and ϕ1 ≡ ψ1, we take

Γ, ϕ1 `∼= ϕ1

(Ax)

...

Γ, ϕ1 `∼= ϕ1 ⇒ ϕ2

Γ, ϕ1 `∼= ϕ2

(⇒ E)

Γ, ϕ1 `∼= ψ2

(∼=)

Γ `∼= ϕ1 ⇒ ψ2

(⇒ I)

In the first case, the new conversion rule has ψ1 as an
assumption and ϕ1 as a conclusion: the rewrite rule ϕ1 →
ψ1 has to be applied right-to-left. Similar expansions of
conversions can be used to decompose a formula with any
other head connector.

5.2 Non-regular rules and proof genericity

An interesting feature of the framework appears with
non-regular rewriting systems (i.e. where a rule l → r is
such that V ar(r) V ar(l)). Indeed, when applying rules
the reverse way, we create new unbound variables which
can be freely instantiated later.

For instance, consider a predicate last intended to ex-
press that a given element is the last of a given list. A way
to define it is to take the congruence defined by the (non-
regular) rewrite rule

last(y::(z::zz), x) → last(z::zz, x)

and have a single axiomLastAx : ∀x.last(x::nil, x) in the
assumptions.

For better readability, let us write l for last(y::(z::zz), x)
and r for last(z::zz, x). The encoded rewrite rule λl.r is
closed, whereas in the reversed rule λr.l the variable y ap-
pears free. Let us see which proof-terms we can build in
this framework.

• LastAx b (corresponding to a (∀E)) is a closed proof-
term for last(b::nil, b).

• Rew
p
r last(b::nil, b) (λr.l) (LastAx b), obtained by

one rewrite step, is a proof-term for last(y::(b::nil), b)
where y is a free variable, which can be seen as a
generic proof over all possible y.

• λy.
(

Rew
p
r last(b::nil, b) (λr.l) (LastAx b)

)

is a

closed (remember y appears in l) proof-term for
∀y.last(y::(b::nil), b), obtained by a simple abstrac-
tion over y (corresponding to a (∀I)).

•
(

λy.
(

Rew
p
r last(b::nil, b) (λr.l) (LastAx b)

))

a is a

closed proof-term for last(a::(b::nil), b). If the outer-
most redex is reduced, the rewrite rule λr.l is replaced
by λr.(l[a/y]), which is a closed instance of it.

Similarly, one can build proof terms for an arbitrary
number of elements in the list, either generic as in
∀x1 . . .∀xn.last(x1::(. . . (xn::(d::nil))), d), or ground as
in last(a1::(. . . (an::(d::nil))), d).

6 Pattern matching modulo α-conversion

In this section we discuss which class of patterns ap-
pear in our proof-terms, and how we should solve the cor-
responding matching problems.

6.1 Matching problems

A first immediate remark is that, according to Fig. 5,
the deductive part of our proof-terms uses only variables as
patterns. Non-trivial matching problems arise only with the
rewrite rules given as arguments to Rew

p and Rew
s.

Matching on algebraic terms is hardly more complex:
patterns can be any term, i.e. either a variable x or a com-
posed term f t1 . . . tn. In this case we only have to deal
with standard syntactic matching:

• in an algebraic pattern, every variable is free;

• a substitution θ is a solution of P � A if Pθ ≡ A.

For propositions, in deduction modulo, usually one con-
siders only rules whose left-hand size is an atomic proposi-
tion p(t1, . . . , tn). In that case, matching remains syntactic.
However, we have seen that rules have to be used from right
to left too, so we may have to perform matching with a pat-
tern which represents a (non-atomic) proposition.

We have encoded implication as a product type Πα:ϕ.ψ
(where α does not occur in ψ) and universal quantification
as Πx:µ.ϕ (where x may appear in ϕ). One immediately
sees that for implication, the variable α is irrelevant; for
quantification, the variable x can be renamed if each of
its (free) occurrences in ϕ is simultaneously renamed the
same way. Therefore, the only free variables appearing in
a proposition pattern are inherited from atomic predicates
and can be only algebraic variables.

The suitable matching theory uses α-conversion:

• the free variables of a pattern are defined inductively:

FV (p t1 . . . tn))
4

=
⋃

Var(ti)

FV (Πα:ϕ.ψ)
4

= FV (ϕ) ∪ FV (ψ)

FV (Πx:µ.ϕ)
4

= FV (ϕ) \ {x}

• a substitution θ is a solution of P � A if Pθ =α A

Example 5 (Non-atomic proposition patterns)

• Πβ:(x6=0).(y=0) represents x6=0 ⇒ y=0. It matches
Πα:(t 6= 0).(t′ = 0) for any variable α and any terms
t and t′.

7

f(t1, . . . , tn) � g(s1, . . . , sn) −→ t1 � s1 ∧ . . . ∧ tn � sn if f = g
p(t1, . . . , tn) � q(s1, . . . , sn) −→ t1 � s1 ∧ . . . ∧ tn � sn if p = q

Π(α : P1).P2 � Π(β : Q1).Q2 −→ P1 � Q1 ∧ P2 � Q2

Π(x : τ).P(x) � Π(y : σ).Q(y) −→ [z/y]P � [z/x]Q for a fresh variable z
x� t ∧ x � t′ −→ ⊥ if t 6= t′

Figure 6. A matching algorithm for propositions

• Πy:int.(x∗y = 0) represents ∀y.(x∗y = 0). It
matches Πz:int.(t∗z = 0) for any variable z and any
term t.

6.2 A matching algorithm

Matching modulo α-conversion can be achieved by syn-
tactic decomposition and systematic renaming of bound
variables. However, as pointed out in the previous sub-
section, the propositional variables are irrelevant since they
cannot appear in the body of a Π-abstraction. In Fig. 6 we
give a set of transformation rules such that:

• every matching problem P �M has a unique normal
form with respect to these rules;

• if it is empty, then P and M are identical up to α-
conversion;

• if it is of the form
∧

i∈I xi � ti with I 6= ∅, then θ =
[ti/xi] is the unique substitution such that Pθ =α M ;

• otherwise, there is no match from P to M .

7 The isomorphism

Let us now discuss to which extent we have defined a
Curry-Howard isomorphism for deduction modulo. In this
section, we explicit the propositions-as-types and proofs-as-
terms embedding, and we study which notion of cut elimi-
nation is modeled by reduction in our proof-term language.

We define two maps for transforming first-order logic
propositions and terms into P 2TS algebraic terms (with
sort ∗s) and types (with sort �), and vice versa.

Definition 3 (Propositions-as-types)

1. J·K : FOL → P 2TS is detailed in Def. 2. It can be
extended to contexts by assigning a fresh name to each
hypothesis:

JΓ, ϕK
4

= JΓK, xϕ : JϕK

2. | · | : P 2TS → FOL is an erasure map, defined the
converse way:

|x|
4

= x

|f t1 . . . tn|
4

= f(|t1|, . . . , |tn|)

|p t1 . . . tn|
4

= p(|t1|, . . . , |tn|)

|Πα:ϕ.ψ|
4

= |ϕ| ⇒ |ψ|

|Πx:µ.ϕ|
4

= ∀x.|ϕ|

|Γ, α:ϕ|
4

= |Γ|, |ϕ|

|Γ, x:µ|
4

= |Γ|

Theorem 3 (Proofs-as-terms)

1. Every type inhabited by a proof-term from Fig. 5 rep-
resents a provable proposition:

Γ ` π : ϕ ⇒ |Γ| `∼= |ϕ|

2. Every provable proposition is represented as a type in-
habited by a proof-term:

Γ `∼= ϕ ⇒ ∃π, JΓK ` π : JϕK

Proof:

1. The translation from typed proof-terms to proofs is
quite straightforward: variables α are mapped to ax-
ioms, λ-abstractions on implication introductions, etc.

2. To build a proof-term for a provable proposition, the
derivation has to be transformed, because we only ap-
ply conversion rule by rule and at the top-level position
of the proposition. Thus, a first step is to have exactly
one conversion rule for each application of a rewrite
rule. The second step is to “expand” the conversion
steps so that conversion occurs at top-level. Finally, we
can build a proof-term with a simple translation map-
ping axioms to variables, etc.

The full proof can be found in Appendix A. �

8

As pointed out in [9], the main drawback of the explicit
conversion rule (∼=) is that a cut is not “local” in a proof: it
is formed by an introduction, an arbitrary number of conver-
sions, and an elimination. For instance, with the congruence
p ∼= q the proof

p `∼= p
(Ax)

`∼= p⇒ p
(⇒ I)

`∼= q ⇒ p
(∼=)

...

`∼= q

`∼= p
(⇒ E)

can be reduced to

...

`∼= q

`∼= p
(∼=)

In our proof-terms, we chose to explicitly account for
the conversions. In some cases, the cut will still appear as
a redex: for instance, the first derivation above has proof-

term
(

λα:q.
(

(λβ:p.β)(Rew
p
q q (λq.p) α)

)

)

π where π is a

proof-term for q. This term reduces to Rew
p
q q (λq.p) π,

which is indeed a proof-term for the reduced derivation.
Unfortunately, a cut with too many nested conversions

may not appear as a redex in the proof-term. The situa-
tion occurs typically when a conversion step is followed by
its opposite: a proper abstraction λα.π (corresponding to
an implication introduction) can be hidden below two (or
more) constructs Rew

p, disabling any possible redex involv-
ing this function. These “unreducible cuts” can be consid-
ered as a symptom of the fact that our proof-term language
lacks some reduction rules.

Conjecture 2 (Cuts-as-redexes) With additional reduc-
tion rules over the conversion constructions such as

Rew
p
l ϕ (λl.r)

(

Rew
p
l′ ϕ

′ (λl′.r′) π
)

7→ π if l=r′ ∧ l′=r

every cut in a proof is modeled as a redex in its proof-term.

In the next section, we will see that, even if a reducible
proof is assigned a normal proof-term, we still have a simple
way of detecting this cut, so the notion of normal proof is
not lost in our isomorphism.

8 Connections with other formalisms

A great interest of the proposed proof-term language re-
sides in the various relations one can establish with other
formalisms and tools. In this section we show how to ex-
tract the deductive content and the computational content
from proof-terms; we also discuss the modalities of an ac-
tual implementation.

8.1 Proof structure

The erasure map | · | transforms a P 2TS-proof-term into
the λ-proof-term which represents the same proof with im-
plicit conversion, as detailed in Fig. 2. Therefore, every
P 2TS-term π such that |π| is in normal form represents
a proof in normal form, and cut elimination holds for the
class of theories having a premodel, as shown by Dowek
and Werner [9].

| · | : P 2TS −→ Λ

|x|
4

= x

|λx:µ.π|
4

= λx:µ.|π|

|πt|
4

= |π||t|

|λα:ϕ.π|
4

= λα:ϕ.|π|

|π π′|
4

= |π| |π′|

|Rew
p
l ϕ (λl.r) π|

4

= π

|Rew
s
l ϕ t (λl.r) π|

4

= π

8.2 Congruence bookkeeping

The function R(·) produces the set of rewrite rules used
in a proof. If the congruence is known a priori, it can be
used to check that the computations did not involve any
unauthorized rewrite rule. It can also be used for charac-
terizing a subset of the rewriting system that is required for
one proof or one set of proofs, and drop unnecessary rules.

R(·) : ρ −→ TRS
R(x)

4

= ∅

R(λx.π)
4

= R(π)

R(πt)
4

= R(π)

R(λα.π)
4

= R(π)

R(π π′)
4

= R(π) ∪R(π′)

R(Rew
p
l ϕ (λl.r) π)

4

= R(π) ∪ {l → r}

R(Rew
s
l ϕ t (λl.r) π)

4

= R(π) ∪ {l → r}

8.3 Building P 2TS-terms

A first approach would be to modify only slightly the
Coq environment in order to produce P 2TS-terms. The
automation would remain very limited, since using a rewrite
rule would require approximately the same work as using
Leibniz equality.

A more promising idea is to use an external tool for com-
puting and producing the corresponding proof-terms. A
closely related instance of this proof paradigm is Nguyen’s
tool [12], which uses the rewrite-based language ELAN to
check the equality of two terms relatively to a rewrite sys-
tem and produce a proof-term for Coq. The user performs
the interactive proof the usual way, with the possibility to

9

call the tactic ElanRewrite at any point to normalize all
first-order subterms of any goal. We could probably use
the Coq/ELAN interface as a basis for an interactive prover
producing P 2TS-proof-terms.

9 Conclusion and perspectives

We have seen how to useP 2TS terms to represent proofs
in natural deduction modulo with an explicit account for
conversion. Two slightly different constructs are used for
conversion on terms and on propositions, and every rewrite
rule used appears in the proof-term. The reduction relation
of P 2TS captures only a fragment of cut elimination, so
our representation could be used effectively for proof search
only at the price of additional reduction rules. Still, pure λ-
calculus proof-terms where every cut appears are embedded
in P 2TS-proof terms and can be recovered by a simple era-
sure map.

The usual proof construction techniques of environments
like Coq (interactive proof with or without calls to an ex-
ternal tool such as ELAN or CiME) are easily adapted for
producing P 2TS proof-terms. Conversely, the information
about conversion steps included in the proof-terms makes
proof-checking easier: there is no need anymore for a pro-
cedure deciding if two propositions are convertible, and
the considered congruence can even be undecidable. The
main interest of our representation is also its principal limit:
proof-terms are quite large, which could be a problem when
dealing with high scale proofs.

An immediate application of our work would be to ex-
tend the Coq environment in order to produce and manip-
ulate P 2TS proof-terms. In Barendregt and Barendsen’s
terminology, this new proof assistant would be classified as
autarkic with a considerable latitude in using the skeptical
style, i.e. able to rely on an external system for computation
if it provides a suitable trace.

As stated in the discussion about cut elimination, a
more fundamental perspective would be to see which ad-
ditional reduction rules are needed to represent every cut.
The strong normalization of the extended reduction relation
should be studied then. On this line of research, we could
possibly find a new characterization of rewrite systems for
which cut elimination holds, extending the works of Dowek
and Werner on that subject.

Acknowledgements The author would like to thank his
advisors for asking him so many times to push researches
on the present topic before the main ideas came forth.

References

[1] H. Barendregt and E. Barendsen. Autarkic computations in
formal proofs. Journal of Automated Reasoning, 28(3):321–
336, Apr. 2002.

[2] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure
Patterns Type Systems. In Principles of Programming Lan-
guages - POPL2003, New Orleans, USA. ACM, Jan. 2003.

[3] S. Berardi. Towards a mathematical analysis of the coquand-
huet calculus of constructions and the other systems in
barendregt’s cube. Technical report, Dept. Computer Sci-
ence, Carnegie Mellon University and Dipartimento Matem-
atica, Universita di Torino, Italy, 1988.

[4] F. Blanqui. Definitions by rewriting in the calculus of con-
structions. In Logic in Computer Science, pages 9–18, 2001.

[5] T. Coquand and G. Huet. The calculus of constructions. In-
formation and Computation, 76:95 – 120, 1988.

[6] T. Coquand and C. Paulin. Inductively defined types.
In P. Martin-Löf and G. Mints, editors, COLOG-88. Pro-
ceedings of International Conference on Computer Logic,
Tallinn, Estonia, volume 417 of Lecture Notes in Computer
Science, pages 50–66. Springer-Verlag, 1990.

[7] N. de Bruijn. The mathematical language AUTOMATH, its
usage, and some of its extensions. In S. Verlag, editor, Sym-
posium on Automatic Demonstration, volume 125 of Lecture
Notes in Mathematics, pages 29 – 61, Versailles, 1970.

[8] G. Dowek, T. Hardin, and C. Kirchner. Theorem proving
modulo. Journal of Automated Reasoning, 31(1):33–72,
Nov 2003.

[9] G. Dowek and B. Werner. Proof normalization modulo.
Journal of Symbolic Logic, 68(4):1289–1316, 2003.

[10] H. Geuvers. Logics and type systems. PhD thesis, Nijmegen
University, 1993.

[11] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. In Second Symposium of Logic in Computer
Science, pages 194 – 204, Ithaca, N. Y., 1987. IEEE, Wash-
ington DC.

[12] Q.-H. Nguyen, C. Kirchner, and H. Kirchner. External
rewriting for skeptical proof assistants. Journal of Auto-
mated Reasoning, 29(3-4):309–336, 2002.

[13] LogiCal project. The Coq proof assistant. INRIA, Rocquen-
court, France, version 8.0 edition, 2004.

[14] B. Wack. The simply-typed pure pattern type system ensures
strong normalization. In J.-J. Lévy, E. Mayr, and J. Mitchell,
editors, 3rd International Conference on Theoretical Com-
puter Science, pages 633 – 646, Toulouse, France, August
2004. IFIP, Kluwer Academic Publishers.

10

A Proofs (for referees only)

Theorem 2 (Strong normalization of ρP)
Every term typable using only the product rules (∗, ∗)

and (∗,�) is strongly normalizing.

Proof: Following the lines of [11], we define a transla-
tion τ of sorts and types and a type-erasure and reduction-
preserving map | · | from ρP -terms to ρ�-terms. We use
a particular constant 0 with `ρ�

0 : ∗ and a family of
constants {πP | P a pattern}. A constant πP has type
0 → . . . → 0 → (ΠP :τ(∆).0) → 0 with n times 0 if
P has n free variables with types given by ∆ (arrows stand
for the usual abbreviation of Π-abstractions).

τ(�)
4

= 0

τ(∗)
4

= 0

τ(x)
4

= x if `ρP x : A : �

τ(f)
4

= f if `ρP f : A : �

τ(ΠP :∆.B)
4

= ΠP :τ(∆).τ(B)

τ(λP :∆.B)
4

= τ(B)

τ([P �∆ A]B)
4

= [P �τ(∆) |A|]τ(B)

τ(AB)
4

= τ(A)

|x|
4

= x

|f |
4

= f

|ΠP :∆.B|
4

= πτ(∆) |A1| . . . |An| (λP :τ(∆).|B|)
if ∆ ≡ x1:A1 . . . xn:An

|λP :∆.B|
4

= λP :τ(∆).
(

(λy1:0 . . . λyn:0.|B|) |A1| . . . |An|
)

if ∆ ≡ x1:A1 . . . xn:An
|AB|

4

= |A| |B|

|[P �∆ B]C|
4

= [P �τ(∆) |B|]
(

(λy1:0 . . . λyn:0.|C|) |A1| . . . |An|
)

The correctness of these functions is given by the two fol-
lowing lemmas, which are easily proved by systematic in-
spection of all cases:

1. If Γ `ρP A : B, then τ(Γ) `ρ�
|A| : τ(B)

2. If A 7→ρσδ A′, then |A| 7→→ρσδ+ |A′|

�

Theorem 3 (Proofs-as-terms)

1. Every type inhabited by a proof-term from Fig. 5 rep-
resents a provable proposition:

Γ ` π : ϕ ⇒ |Γ| `∼= |ϕ|

2. Every provable proposition is represented as a type in-
habited by a proof-term:

Γ `∼= ϕ ⇒ ∃π, JΓK ` π : JϕK

Proof:

1. This direction is quite straightforward: we proceed by
induction over the structure of π.

π ≡ α : then (α:ϕ) ∈ Γ, so |ϕ| ∈ |Γ| and immedi-
ately we have

|Γ| `∼= |ϕ|
(Ax)

π ≡ λα.π′ : then ϕ ≡ Πα:ϕ1.ϕ2, the type derivation
ends with (Abs) and has Γ, α:ϕ1 ` π′ : ϕ2 as an
assumption. By induction we have |Γ|, |ϕ1| `∼=

|ϕ2| so we have

|Γ|, |ϕ1| `∼= |ϕ2|

|Γ| `∼= |ϕ1| ⇒ |ϕ2|
(⇒ I)

and indeed |Πα:ϕ1.ϕ2| = |ϕ1| ⇒ |ϕ2|.

π ≡ λx.π′ : then ϕ ≡ Πx:µ.ϕ1, the type derivation
ends with (Abs) and has Γ, x:µ ` π′ : ϕ1 as an
assumption. By induction we have |Γ| `∼= |ϕ1|
where x /∈ FV (Γ) so we have

|Γ| `∼= |ϕ1|

|Γ| `∼= ∀x.|ϕ1|
(∀I)

and indeed |Πx:µ.ϕ1| = ∀x.|ϕ1|

π ≡ π′ π′′ : then the type derivation ends with (App)
and has Γ ` π′ : Πα:ψ.ϕ and Γ ` π′′ : ψ
as assumptions. By induction we have |Γ| `∼=

|Πα:ψ.ϕ| and |Γ| `∼= |ψ| so we have

|Γ| `∼= |ψ| ⇒ |ϕ| |Γ| `∼= |ψ|

|Γ| `∼= |ϕ|
(⇒ E)

since |Πα:ψ.ϕ| = |ψ| ⇒ |ϕ|.

π ≡ π′ t : then the type derivation ends with (App)
and has Γ ` π′ : Πx:µ.ψ and Γ ` t : µ as
assumptions, with ϕ ≡ ψ[t/x]. By induction we
have |Γ| `∼= |Πx:µ.ψ| so we have

|Γ| `∼= ∀x.|ψ|

|Γ| `∼= |ϕ|
(∀E)

since |Πx:µ.ϕ| = ∀x.|ϕ|

11

π ≡ Rew
p
l ϕ

′(λl.r)π′ : then ϕ ≡ [l � ϕ′]r and
the type derivation ends with various (App) and
(Conv) rules, among which the assumption Γ `
π′ : ϕ′ can be tracked. If the matching problem
l � ϕ′ has no solution, then ϕ does not represent
a proposition and π is not an interesting proof-
term. Otherwise, ϕ=ρσδ rθ(l�ϕ′) and by induc-
tion |Γ| `∼= |ϕ′| so we have:

|Γ| `∼= |ϕ′|

|Γ| `∼= |ϕ|
(∼=) using the rewrite rule l → r

π ≡ Rew
s
lϕ

′t(λl.r)π′ : then ϕ ≡ ϕ′([l � t]r) and
the type derivation ends with various (App) and
(Conv) rules, among which the assumption Γ `
π′ : ϕ′(t) can be tracked. If the matching prob-
lem l � t has no solution, then ϕ does not rep-
resent a proposition and π is not an interesting
proof-term. Otherwise, ϕ=ρσδ ϕ

′(rθ(l�t)) and by
induction |Γ| `∼= |ϕ′(t)| so we have:

|Γ| `∼= |ϕ′(t)|

|Γ| `∼= |ϕ|
(∼=) using the rewrite rule l → r

2. We proceed in three steps.

The first step simply consists into making the congru-
ence steps appear clearly: in the derivation, rule (∼=)
occurs for one (and only one) application (forward or
backward) of a rewrite rule.

Then “expand” the congruence steps as shown in Sec-

tion 5: supposing we have
Γ `∼= ψ
Γ `∼= ϕ

(∼=) , we distin-

guish cases over the conversion step between ψ and ϕ.

• if ϕ →R ψ or ψ →R ϕ at the top-level position,
we proceed to the next step.

• if ϕ ≡ ϕ1 ⇒ ϕ2 with ϕ1
∼= ψ1 and ψ ≡ ψ1 ⇒

ϕ2, then we expand the conversion step into

Γ, ψ1 `∼= ψ1

(Ax)

Γ, ψ1 `∼= ϕ1

(∼=)
Γ, ψ1 `∼= ϕ1 ⇒ ϕ2

Γ, ψ1 `∼= ϕ2

(⇒E)

Γ `∼= ψ1 ⇒ ϕ2

(⇒ I)

and recursively treat the conversion ψ1
∼= ϕ1.

• if ϕ ≡ ϕ1 ⇒ ϕ2 with ϕ2
∼= ψ2 and ψ ≡ ϕ1 ⇒

ψ2, then we expand the conversion step into

Γ, ϕ1 `∼= ϕ1

(Ax)
Γ, ϕ1 `∼= ϕ1 ⇒ ϕ2

Γ, ϕ1 `∼= ϕ2

(⇒E)

Γ, ϕ1 `∼= ψ2

(∼=)

Γ `∼= ϕ1 ⇒ ψ2

(⇒ I)

and recursively treat the conversion ϕ2
∼= ψ2.

• if ϕ ≡ ∀x.ϕ1 with ϕ1
∼= ψ1 and ψ ≡ ∀x.ψ1,

then we expand the conversion step into

Γ `∼= ∀x.ψ1

Γ `∼= ψ1

(∀E)

Γ `∼= ϕ1

(∼=)

Γ `∼= ∀x.ϕ1

(∀I)

and recursively treat the new conversion ψ1
∼=

ϕ1.

In the third step, we translate inference rules into
proof-terms. The translation is roughly the reverse
to the one detailed above for provability of inhabited
propositions:

• axioms are translated into variables;

• introduction of ⇒ is translated into λ-abstraction
over a variable α;

• introduction of ∀ is translated into λ-abstraction
over a variable x;

• elimination of ⇒ and ∀ are translated into appli-
cation;

• conversion over proposition (resp. term) is trans-
lated into a Rew

p
l (resp. Rew

s
l) construction. For

terms, it is always possible; for propositions it
is possible since conversions occur at top-level
only.

�

12

