Higher-Order Termination From Kruskal to Computability

Jean-Pierre Jouannaud École Polytechnique 91400 Palaiseau, France

Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.

Joint work with Frédéric Blanqui and Albert Rubio

Workshop RHO 2006, London, october 17, 2006

Outline

- Migher-order algebras
- Tait's method
- Recursive path ordering
- General Schema
- Migher Order Recursive Path Ordering
- 6 HORPO and Closure

Higher-order algebras [Jouannaud, Rubio, JACM to appear]

Types, signatures and terms

 S: set of sort symbols of a fixed arity, denoted by s: *ⁿ ⇒ *

$$\mathcal{T}_{\mathcal{S}} := \mathbf{s}(\mathcal{T}_{\mathcal{S}}^n) \mid (\mathcal{T}_{\mathcal{S}} \to \mathcal{T}_{\mathcal{S}})$$
for $\mathbf{s} : *^n \Rightarrow * \in \mathcal{S}$

$$\mathcal{T} := \mathcal{X} \mid (\lambda \mathcal{X}.\mathcal{T}) \mid \mathfrak{Q}(\mathcal{T},\mathcal{T}) \mid \mathcal{F}(\mathcal{T},\ldots,\mathcal{T}).$$

We will sometimes write T(T) for Q(T,T).

Types, signatures and terms

 S: set of sort symbols of a fixed arity, denoted by s: *ⁿ ⇒ *

$$\mathcal{T}_{\mathcal{S}} := s(\mathcal{T}_{\mathcal{S}}^n) \mid (\mathcal{T}_{\mathcal{S}} \to \mathcal{T}_{\mathcal{S}})$$
for $s : *^n \Rightarrow * \in \mathcal{S}$

$$\mathcal{T} := \mathcal{X} \mid (\lambda \mathcal{X}.\mathcal{T}) \mid \mathcal{Q}(\mathcal{T},\mathcal{T}) \mid \mathcal{F}(\mathcal{T},\ldots,\mathcal{T}).$$

We will sometimes write $\mathcal{T}(\mathcal{T})$ for $\mathbb{Q}(\mathcal{T},\mathcal{T})$.

Types, signatures and terms

 S: set of sort symbols of a fixed arity, denoted by s: *ⁿ ⇒ *

$$\mathcal{T}_{\mathcal{S}} := s(\mathcal{T}_{\mathcal{S}}^n) \mid (\mathcal{T}_{\mathcal{S}} \to \mathcal{T}_{\mathcal{S}})$$
for $s : *^n \Rightarrow * \in \mathcal{S}$

$$\mathcal{T} := \mathcal{X} \mid (\lambda \mathcal{X}.\mathcal{T}) \mid \mathfrak{Q}(\mathcal{T},\mathcal{T}) \mid \mathcal{F}(\mathcal{T},\ldots,\mathcal{T}).$$

We will sometimes write T(T) for Q(T, T).

Typing rules

Variables:

$$\frac{\mathbf{x}:\sigma\in\Gamma}{\Gamma\vdash\mathbf{x}:\sigma}$$

Functions:

$$f: \sigma_{1} \times \ldots \times \sigma_{n} \Rightarrow \sigma$$

$$\Gamma \vdash t_{1} : \tau_{1} \ldots \Gamma \vdash t_{n} : \tau_{n}$$

$$\theta = mgu(\sigma_{1} = \tau_{1} \& \ldots \& \sigma_{n} = \tau_{n})$$

$$\Gamma \vdash f(t_{1}, \ldots, t_{n}) : \sigma$$

Abstraction:

$$\frac{\Gamma \cup \{\mathbf{X} : \sigma\} \vdash \mathbf{t} : \tau}{\Gamma \vdash (\lambda \mathbf{X} : \sigma . \mathbf{t}) : \sigma \to \tau}$$

Application:

$$\frac{\Gamma \cup \{\mathbf{X} : \sigma\} \ \vdash \ \mathbf{S} : \sigma \to \tau \quad \Gamma \ \vdash \ \mathbf{t} : \sigma}{\Gamma \ \vdash \ \mathbb{Q}(\mathbf{S}, \mathbf{t}) : \tau}$$

Higher-order rules, first-order pattern matching

```
\mathbf{N}, \alpha : *
    0, x : \mathbb{N}
    s : \mathbb{N} \Rightarrow \mathbb{N}
    rec : \mathbb{N} \times \alpha \times (\mathbb{N} \to \alpha \to \alpha) \Rightarrow \alpha
    U : \alpha
    X : \mathbb{N} \to \alpha \to \alpha
rec(0, U, X) \rightarrow U
rec(s(x), U, X) \rightarrow @(X, x, rec(x, U, X))
```

Higher-order rules, first-order pattern matching

```
0, x : Ord
s : Ord \rightarrow Ord
lim : (\mathbb{N} \to Ord) \Rightarrow Ord
rec : Ord \times \alpha \times (\text{Ord} \rightarrow \alpha \rightarrow \alpha) \times ((\mathbb{N} \rightarrow \text{Ord}) \rightarrow (\mathbb{N} \rightarrow \alpha) \Rightarrow \alpha)
              \rightarrow \alpha
F : \mathbb{N} \to Ord
U : \alpha
X : Ord \rightarrow \alpha \rightarrow \alpha
W : (\mathbb{N} \to Ord) \to (\mathbb{N} \to \alpha) \to \alpha
rec(0, U, X, W) \rightarrow U
rec(s(x), U, X, W) \rightarrow \emptyset(X, x, rec(x, U, X, W))
rec(lim(F), U, X, W) \rightarrow @(W, F, \lambda n.rec(@(F, n), U, X, W))
```

Automate strong normalization proofs

Tait's method

Language

- Simple type discipline
- One rewrite schema:

$$\mathbb{Q}(\lambda x.u, v) \rightarrow u\{x \mapsto v\}$$

- $\llbracket \sigma \rrbracket$, the *computability predicate* of type σ s.t.:
- (i) computable terms are strongly normalizing;
- (ii) reducts of computable terms are computable;
- (iii) a neutral term *u* is computable iff all its reducts are computable;
- (iv) $u : \sigma \to \tau$ is computable iff so is $\mathbb{Q}(u, v)$ for all computable v;
- (v) (optionnal) $\lambda x.u$ is computable iff so is $u\{x \mapsto v\}$ for all computable v.

Except (v), no explicit mention of β -reduction.

Examples of computability predicates

Basic types: there are two possibilities

$$\mathbf{s}:\sigma\in [\![\sigma]\!]$$
 iff \mathbf{s} is strongly normalizing or

$$s : \sigma \in \llbracket \sigma \rrbracket$$
 iff $\forall t : \tau$ s.t. $s \longrightarrow t$ then $t \in \llbracket \tau \rrbracket$

Functional types:

$$s: \theta \to \tau \in \llbracket \sigma \to \tau \rrbracket$$
 iff $\mathfrak{Q}(s, u): \tau \in \llbracket \tau \rrbracket$ for every $u: \theta \in \llbracket \theta \rrbracket$.

Main Lemma

Given term s and computable substitution γ , then $s\gamma$ is computable.

By induction on the structure of terms.

- $s \in \mathcal{X}$. $s\gamma$ computable by assumption.
- \circ s = @(u, v). $u\gamma$ and $v\gamma$ are computable by induction hypothesis, hence $s\gamma = @(u\gamma, v\gamma)$ is computable by computability property (iv).
- $s = \lambda x.u$. By property (v), $s\gamma = \lambda x.u\gamma$ is computable iff $u\gamma\{x\mapsto v\} = u(\gamma\cup\{x\mapsto v\})$ is computable for all computable v. We conclude by induction hypothesis.

Recursive path ordering

- $s = f(\overline{s})$ with $f \in \mathcal{F}$, and $u \succeq_{rpo} t$ for some $u \in \overline{s}$
- $s = f(\overline{s})$ with $f \in \mathcal{F}$, and $t = g(\overline{t})$ with $f >_{\mathcal{F}} g$, and A
- $ullet s=f(\overline{s}) ext{ and } t=g(\overline{t}) ext{ with } f=_{\mathcal{F}}g, ext{ and } A ext{ and } \overline{s} \ (\mathop{\succsim}_{rpo})_{stat_f} \overline{t}$

where
$$\begin{cases} s \succeq_{rpo} t \text{ iff } s \succ_{rpo} t \text{ or } s = t \\ A = \forall v \in \overline{t}. f(\overline{s}) \succ_{horpo} v \end{cases}$$

Tait's SN proof of RPO

Computability is defined as strong normalization, implying all computability properties trivially. We add a new computability property:

(vi) Let $f \in \mathcal{F}_n$ and \overline{s} be computable terms. Then $f(\overline{s})$ is computable.

Tait's strong normalization proof of RPO

First (vi): \overline{s} computable implies $f(\overline{s})$ computable.

The restriction of \succ_{rpo} to terms smaller than or equal to the terms in \overline{s} w.r.t. \succ_{rpo} is a well-founded ordering which we use for building an outer induction on the pairs (f, \overline{s}) ordered by $(\succ_{\mathcal{F}}, (\succ_{rpo})_{stat_f})_{lex}$.

We now show that $f(\overline{s})$ is computable by proving that t is computable for all t such that $f(\overline{s}) \succ_{rpo} t$. This property is itself proved by an inner induction on |t|, and by case analysis upon the proof that $f(\overline{s}) \succ_{rpo} t$.

Property (vi)

- subterm: $\exists u \in \overline{s}$ such that $u \succ_{rpo} t$. By assumption, u is computable. Reduct t too.
- precedence: $t = g(\bar{t})$, $f >_{\mathcal{F}} g$, and $s \succ_{rpo} \bar{t}$. By inner induction, \bar{t} is computable. By outer induction, $g(\bar{t}) = t$ is computable.
- status: $t = g(\bar{t})$ with $f =_{\mathcal{F}} g \in Lex$, $\bar{s}(\succ_{rpo})_{lex}\bar{t}$, and $s \succ_{rpo} \bar{t}$. By inner induction, \bar{t} is computable. By outer induction, $g(\bar{t}) = t$ is computable.

Main Lemma

We prove by induction on the structure of terms that every term $t = f(\bar{t})$ is computable. By induction hypothesis, \bar{t} is computable. By property (vi), t is computable.

The well-foundedness of \succ_{rpo} follows by Property (i).

General Schema

Closure and General Schema

The computability closure $\mathcal{CC}(t = f(\bar{t}))$, with $f \in \mathcal{F}$, is the set $\mathcal{CC}(t, \emptyset)$, s.t. $\mathcal{CC}(t, \mathcal{V})$, with $\mathcal{V} \cap \mathcal{V}ar(t) = \emptyset$, is the smallest set of typable terms containing all variables in \mathcal{V} and terms in \bar{t} , closed under:

- basic type subterm; application; abstraction;
- precedence: let $f >_{\mathcal{F}} g$, and $\overline{s} \in \mathcal{CC}(t, \mathcal{V})$; then $g(\overline{s}) \in \mathcal{CC}(t, \mathcal{V})$;
- recursive call: let $f(\overline{s})$ be a term s.t. terms in \overline{s} belong to $\mathcal{CC}(t,\mathcal{V})$ and $\overline{t}(\longrightarrow_{\beta \cup \triangleright})_{stat_f}\overline{s}$; then $g(\overline{s}) \in \mathcal{CC}(t,\mathcal{V})$ for every $g =_{\mathcal{F}} f$;
- reduction: let $u \in \mathcal{CC}(t, \mathcal{V})$, and $u \longrightarrow_{\beta \cup \triangleright} v$; then $v \in \mathcal{CC}(t, \mathcal{V})$.

General schema [Blanqui, Jouannaud and Okada, TCS 2001]

We say that a rewrite system *R* satisfies the *general schema* if

$$R = \{ f(\bar{I}) \to r \mid r \in \mathcal{CC}(f(\bar{I})) \}$$

We now consider computability with respect to the rewrite relation $\longrightarrow_R \cup \longrightarrow_\beta$, and add the computability property (vii) whose proof can be easily adapted from the previous one. We can then add a new case in Tait's Main Lemma, for terms headed by an algebraic function symbol.

Conclusion: $\longrightarrow_{\beta} \cup \longrightarrow_{R}$ is SN.

Example : System T

$$rec(s(x), U, X) \rightarrow @(X, x, rec(x, U, X))$$

Higher Order Recursive Path Ordering

Higher-Order Recursive Path Ordering: Ingredients

- A quasi-ordering on types $\geq_{\mathcal{I}_{\mathcal{S}}}$ called *the type ordering* s.t.
 - (i) $>_{\mathcal{I}_{\mathcal{S}}}$ is well-founded;
 - (ii) Arrow preservation: $\tau \to \sigma =_{\mathcal{T}_{\mathcal{S}}} \alpha$ iff $\alpha = \tau' \to \sigma', \ \tau' =_{\mathcal{T}_{\mathcal{S}}} \tau$ and $\sigma =_{\mathcal{T}_{\mathcal{S}}} \sigma'$;
 - (iii) Arrow decreasingness: $\tau \to \sigma >_{\mathcal{T}_{\mathcal{S}}} \alpha$ implies $\sigma \geq_{\mathcal{T}_{\mathcal{S}}} \alpha$ or $\alpha = \tau' \to \sigma', \tau' =_{\mathcal{T}_{\mathcal{S}}} \tau$
 - and $\sigma >_{\mathcal{T}_{\mathcal{S}}} \sigma'$; (iv) Arrow monotonicity: $\tau \geq_{\mathcal{T}_{\mathcal{S}}} \sigma$ implies $\alpha \rightarrow \tau >_{\mathcal{T}_{\mathcal{S}}} \alpha \rightarrow \sigma$ and $\tau \rightarrow \alpha \geq_{\mathcal{T}_{\mathcal{S}}} \sigma \rightarrow \alpha$;

Example: RPO with restricted subterm for →

HORPO's Ingredients

- A quasi-ordering $\geq_{\mathcal{F}}$ on \mathcal{F} , called the *precedence*, such that $>_{\mathcal{F}}$ is well-founded.
- A status stat_f \in {Mul, Lex} for every symbol $f \in \mathcal{F}$.

HORPO's Definition: $s \succ_{horpo} t$ iff $\sigma \geq_{\mathcal{I}_{\mathcal{S}}} \tau$ and

- $s = f(\overline{s})$ with $f \in \mathcal{F}$, and $u \succeq_{horpo} t$ for $u \in \overline{s}$
- $s = f(\overline{s})$ with $f \in \mathcal{F}$, and $t = g(\overline{t})$ with $f >_{\mathcal{F}} g$, and A
- $s=f(\overline{s}) ext{ and } t=g(\overline{t}) ext{ with } f=_{\mathcal{F}}g, ext{ and } A ext{ and } \overline{s} (\underset{horpo}{\succ})_{stat_f} \overline{t}$

where
$$\begin{cases} s \succeq_{horpo} t \text{ iff } s \succ_{horpo} t \text{ or } s =_{\alpha} t \\ A = \forall v \in \overline{t}.s \succ_{horpo} v \text{ or } \exists u \in \overline{s}.u \succeq_{horpo} v \end{cases}$$

- $s = f(\overline{s})$ with $f \in \mathcal{F}$, $t = \mathbb{Q}(\overline{t})$ and A
- $s = f(\overline{s})$ with $f \in \mathcal{F}$, $t = \lambda x : \alpha . v$ with $x \notin \mathcal{V}ar(v)$ and $s \succ v$

Higher-Order Recursive Path Ordering : Definition

- $s = \mathbb{Q}(s_1, s_2)$, and $s_1 \succeq_{horpo} t$ or $s_2 \succeq_{horpo} t$
- \circ $s = \mathfrak{Q}(\overline{s}), \ t = \mathfrak{Q}(\overline{t}), \ \text{and} \ \overline{s}(\underset{horpo}{\succ})_{mul} \ \overline{t}$
- $s = \mathbb{Q}(\lambda x : \alpha.u, v)$ and $u\{x \mapsto v\} \succeq_{horpo} t$
- $s = \lambda x : \alpha.u$ with $x \notin Var(t)$, and $u \succeq_{horpo} t$
- $s = \lambda x : \alpha. @(u, x), x \notin Var(u) \text{ and } u \succeq_{horpo} t$

Example: simple proof of system *T*

$$rec(s(x), U, X) \rightarrow @(X, x, rec(x, U, X))$$

HORPO and Closure

Combining HORPO and closure

We change the subterm case:

•
$$s = f(\overline{s})$$
 with $f \in \mathcal{F}$ and $u \succeq_{horpo} t$ for $u \in \overline{s}$

in

$$s = f(\overline{s})$$
 with $f \in \mathcal{F}$ and $u \succeq_{horpo} t$ for $u \in \mathcal{CC}(f(\overline{s}))$

Drawbacks:

- Decidability of HORPO is lost;
- There are many repetitions;
- Type checking is no much help, but a lot of burden;
- Treatment of abstractions remains weak.

New HORPO with integrated closure mechanism

Ingredients:

- A set of strictly positive inductive types inducing an accessibility relationship $\overline{s} \trianglerighteq_{acc} v$ such that $v \in \overline{u}$ or v is accessible from $u \in \overline{s}$
- a precedence on function symbols
- a congruence on types
- $s \succ^X t$ for the main ordering
- $s : \sigma \succ_{\mathcal{T}_{\mathcal{S}}}^{\mathsf{X}} t : \tau \text{ for } s \succ^{\mathsf{X}} t \text{ and } \sigma =_{\mathcal{T}_{\mathcal{S}}} \tau$
- $I \succ_{\mathcal{T}_{\mathcal{S}}}^{\emptyset} r$ as initial call for each $I \rightarrow r \in R$

Case 1: $s = f(\overline{s})$ with $f \in \mathcal{F}$ and $t \in X$ or

- $u \succeq_{T_S}^X t$ for some u such that $\overline{s} \trianglerighteq_{acc} u$
- ② $t = g(\bar{t})$ with $f >_{\mathcal{F}} g \in \mathcal{F} \cup \{\emptyset\}$ and $s \succ^{X} \bar{t}$
- $t = \lambda x.u$ with $x \notin X$ and $f(\overline{s}) \succ^{X \cup \{x\}} u$

Case 2: s = @(v, w) and

- $t = \mathbb{Q}(u,r)$ and $(v,w)(\succ_{T_S}^X)_{mon}(u,r)$
- $v = \lambda x.u$ and $u\{x \mapsto w\} \succ^X t$

Case 3: $s = \lambda x : \alpha . u$ and

- $t = \lambda x : \beta.v, x \notin X, \alpha =_{\mathcal{T}_{\mathcal{S}}} \beta \text{ and } u \succ^{X \cup \{x\}} v$
- $u = \mathbb{Q}(v, x), x \notin \mathcal{V}ar(v) \text{ and } v \succ^X t$

Case 1: $s = f(\overline{s})$ with $f \in \mathcal{F}$ and $t \in X$ or

- $u \succeq_{T_S}^X t$ for some u such that $\overline{s} \trianglerighteq_{acc} u$
- \bullet $t = g(\bar{t})$ with $f >_{\mathcal{F}} g \in \mathcal{F} \cup \{\emptyset\}$ and $s \succ^{X} \bar{t}$
- $t = \lambda x.u$ with $x \notin X$ and $f(\overline{s}) \succ^{X \cup \{x\}} u$

Case 2: s = @(v, w) and

- $t = \mathbb{Q}(u, r)$ and $(v, w)(\succ_{T_s}^X)_{mon}(u, r)$
- $v = \lambda x.u$ and $u\{x \mapsto w\} \succ^X t$

Case 3: $s = \lambda x : \alpha . u$ and

- $t = \lambda x : \beta.v, x \notin X, \alpha =_{T_S} \beta \text{ and } u \succ^{X \cup \{x\}} v$
- $u = \mathbb{Q}(v, x), x \notin Var(v) \text{ and } v \succ^X t$

Case 1: $s = f(\overline{s})$ with $f \in \mathcal{F}$ and $t \in X$ or

- $u \succeq_{\mathcal{T}_{\mathcal{S}}}^{X} t$ for some u such that $\overline{s} \trianglerighteq_{acc} u$
- \bullet $t = g(\overline{t})$ with $f >_{\mathcal{F}} g \in \mathcal{F} \cup \{\emptyset\}$ and $s \succ^{X} \overline{t}$
- $egin{aligned} oldsymbol{s} & t = g(\overline{t}) ext{ with } f =_{\mathcal{F}} g \in \mathcal{F} ext{ and } s \succ^X \overline{t} ext{ and } \overline{s}(\succ^X_{Ts})_{stat_f} \overline{t} \end{aligned}$
- $t = \lambda x.u$ with $x \notin X$ and $f(\overline{s}) \succ^{X \cup \{x\}} u$
- **Case 2:** s = @(v, w) and
 - $t = \mathbb{Q}(u,r)$ and $(v,w)(\succ_{\mathcal{I}_S}^X)_{mon}(u,r)$
- $v = \lambda x.u$ and $u\{x \mapsto w\} \succ^X t$
- Case 3: $s = \lambda x : \alpha . u$ and
 - $t = \lambda x : \beta.v, x \notin X, \alpha =_{\mathcal{T}_{\mathcal{S}}} \beta \text{ and } u \succ^{X \cup \{x\}} v$
 - $u = \mathbb{Q}(v, x), x \notin \mathcal{V}ar(v) \text{ and } v \succ^X t$

$$\lim_{r \to \infty} (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F : \mathbb{N} \to \mathsf{Ord} \qquad n : \mathbb{N}$$
$$\operatorname{rec} : \mathsf{Or} \times \alpha \times (\mathsf{Or} \to \alpha \to \alpha) \times ((\mathbb{N} \to \mathsf{Or}) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha$$

- $rec(lim(F), U, X, W) \succ_{\mathcal{T}_S}^{\emptyset} @(W, F, \lambda n.rec(@(F, n), U, X, W))$ vields 2 subgoals:
- ◎ $rec(lim(F), U, X, W) \succ^{\emptyset} \{W, F, \lambda n.rec(@(F, n), U, X, W)\}$ which simplifies to:
- \bigcirc rec(lim(F), U, X, W) \succ^{\emptyset} W which succeeds by Case 1.1,
- \bigcirc rec(lim(F), U, X, W) \succeq^{\emptyset} F, which succeeds by Case 1.1
- \bigcirc rec(lim(F), U, X, W) $\succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields
- \bigcirc rec(lim(F), U, X, W) $\succeq^{\{n\}}$ rec(@(F, n), U, X, W) yields
- \bigcirc $\{\mathit{lim}(F), U, X, W\}(\succ^{\{n\}}_{T_S})_{\mathit{mul}}\{@(F, n), U, X, W\}, \text{ hence}$
- \bigcirc $\lim(F)\succ_{T_S}^{\{n\}} @(F,n)$ whose type-check succeeds, and yields
- \bigcirc $lim(F) \succ \{n\}$ F which succeeds by Case 1.2, and
- \bigcirc $\lim(F) > {n \choose n}$ which succeeds by Case 1.

 $lim: (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F: \mathbb{N} \to \mathsf{Ord}$ n : N $rec: Or \times \alpha \times (Or \rightarrow \alpha \rightarrow \alpha) \times ((\mathbb{N} \rightarrow Or) \rightarrow (\mathbb{N} \rightarrow \alpha) \rightarrow \alpha) \Rightarrow \alpha$

 $rec(lim(F), U, X, W) \succ_{\mathcal{T}_{S}}^{\emptyset} @(W, F, \lambda n.rec(@(F, n), U, X, W))$ yields 2 subgoals:

2 $\alpha =_{\mathcal{T}_{\mathcal{S}}} \alpha$ which is trivially satisfied, and

⑤ $rec(lim(F), U, X, W) \succ^{\emptyset} \{W, F, \lambda n. rec(@(F, n), U, X, W)\}$

 \bigcirc rec(lim(F), U, X, W) \succ W which succeeds by Case 1.1,

⑤ $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1,

o $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields \bigcirc rec(lim(F), U, X, W) \succ {n} rec(\bigcirc (F, n), U, X, W) yields

 $\{ lim(F), U, X, W \} (\succ_{T_S}^{\{n\}})_{mul} \{ @(F, n), U, X, W \}, \text{ hence }$ ① $lim(F) > {n}{\tau_c}$ @(F, n) whose type-check succeeds, and yields

 $rec(lim(F), U, X, W) \succ {n}{\{\emptyset(F, n), U, X, W\}}$, our remaining

$$\lim : (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F : \mathbb{N} \to \mathsf{Ord} \qquad n : \mathbb{N}$$

$$\mathsf{rec} : \mathsf{Or} \times \alpha \times (\mathsf{Or} \to \alpha \to \alpha) \times ((\mathbb{N} \to \mathsf{Or}) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha$$

- $rec(lim(F), U, X, W) \succ_{\mathcal{T}_{S}}^{\emptyset} @(W, F, \lambda n.rec(@(F, n), U, X, W))$
 - yields 2 subgoals:
 - $\alpha =_{\mathcal{T}_{\mathcal{S}}} \alpha$ which is trivially satisfied, and orec(lim(F), U, X, W) \succ^{\emptyset} { W, F, $\lambda n.rec(@(F, n), U, X, W)$ }

 - $rec(lim(F), U, X, W) \succ^{\emptyset} W$ which succeeds by Case 1.1, $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1,
 - o $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields \bigcirc rec(lim(F), U, X, W) \succ {n} rec(\bigcirc (F, n), U, X, W) yields
 - $\{ lim(F), U, X, W \} (\succ_{T_S}^{\{n\}})_{mul} \{ @(F, n), U, X, W \}, \text{ hence }$
- - $rec(lim(F), U, X, W) \succ {n}{\{\emptyset(F, n), U, X, W\}}$, our remaining goal, succeeds easily by Cases 1.2. 1 and ₫ 1 ⋅ ≣ ト ⋅ ≣ ト ⊃ ⊆ → ⊃ ۹ ⋅ ભ

$$\begin{array}{l} \textit{lim}: (\mathbb{N} \rightarrow \textit{Ord}) \Rightarrow \textit{Ord} \qquad \textit{F}: \mathbb{N} \rightarrow \textit{Ord} \qquad \textit{n}: \mathbb{N} \\ \textit{rec}: \textit{Or} \times \alpha \times (\textit{Or} \rightarrow \alpha \rightarrow \alpha) \times ((\mathbb{N} \rightarrow \textit{Or}) \rightarrow (\mathbb{N} \rightarrow \alpha) \rightarrow \alpha) \Rightarrow \alpha \end{array}$$

- $rec(lim(F), U, X, W) \succ_{\mathcal{T}_{S}}^{\emptyset} @(W, F, \lambda n.rec(@(F, n), U, X, W))$ yields 2 subgoals:
- $\alpha =_{\mathcal{T}_{\mathcal{S}}} \alpha$ which is trivially satisfied, and
- orec(lim(F), U, X, W) $\succ^{\emptyset} \{W, F, \lambda n.rec(\emptyset(F, n), U, X, W)\}$
- which simplifies to: $rec(lim(F), U, X, W) \succ^{\emptyset} W$ which succeeds by Case 1.1,
- $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1, $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n. rec(@(F, n), U, X, W)$ yields
- \bigcirc rec(lim(F), U, X, W) \succ {n} rec(\bigcirc (F, n), U, X, W) yields

- $rec(lim(F), U, X, W) \succ {n}{\{\emptyset(F, n), U, X, W\}}$, our remaining goal, succeeds easily by Cases 1.2. 1 and ₫ 1 ⋅ ≣ ト ⋅ ≣ ト ⊃ ⊆ → ⊃ ۹ ⋅ ભ

$$\begin{array}{l} \textit{lim}: (\mathbb{N} \to \textit{Ord}) \Rightarrow \textit{Ord} \qquad \textit{F}: \mathbb{N} \to \textit{Ord} \qquad \textit{n}: \mathbb{N} \\ \textit{rec}: \textit{Or} \times \alpha \times (\textit{Or} \to \alpha \to \alpha) \times ((\mathbb{N} \to \textit{Or}) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha \end{array}$$

- $rec(lim(F), U, X, W) \succ_{\mathcal{T}_{S}}^{\emptyset} @(W, F, \lambda n.rec(@(F, n), U, X, W))$ yields 2 subgoals:
- $\alpha =_{\mathcal{T}_{\mathcal{S}}} \alpha$ which is trivially satisfied, and
- orec(lim(F), U, X, W) $\succ^{\emptyset} \{W, F, \lambda n.rec(\emptyset(F, n), U, X, W)\}$ which simplifies to:
- or $rec(lim(F), U, X, W) > \emptyset$ W which succeeds by Case 1.1,
- $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1, $rec(lim(F), U, X, W) \succeq^{\emptyset} \lambda n. rec(@(F, n), U, X, W)$ yields
- $rec(lim(F), U, X, W) \succ^{\{n\}} rec(\emptyset(F, n), U, X, W)$ yields ① $\{lim(F), U, X, W\}(\succ_{T_c}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$
- $|Iim(F)| > \frac{n}{T_0} @(F, n)$ whose type-check succeeds, and yields
- $rec(lim(F), U, X, W) \succ {n}{\{\emptyset(F, n), U, X, W\}}$, our remaining goal, succeeds easily by Cases 1.2. 1 and ₫ 1 ⋅ ≣ ト ⋅ ≣ ト ⊃ ⊆ → ⊃ ۹ ⋅ ભ

- $\lim : (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F : \mathbb{N} \to \mathsf{Ord} \qquad n : \mathbb{N}$ $\mathsf{rec} : \mathsf{Or} \times \alpha \times (\mathsf{Or} \to \alpha \to \alpha) \times ((\mathbb{N} \to \mathsf{Or}) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha$
 - rec(lim(F), U, X, W) $\succ_{\mathcal{T}_{\mathcal{S}}}^{\emptyset}$ @(W, F, $\lambda n.rec$ (@(F, n), U, X, W)) yields 2 subgoals:
 - 2 $\alpha =_{\mathcal{T}_S} \alpha$ which is trivially satisfied, and
 - **③** rec(lim(F), U, X, W) ≻[∅] { $W, F, \lambda n.rec(@(F, n), U, X, W)$ } which simplifies to:
 - $rec(lim(F), U, X, W) \succ^{\emptyset} W$ which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1,
 - ⑤ $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields ⑦ $rec(lim(F), U, X, W) \succ^{\{n\}} rec(@(F, n), U, X, W)$ yields
 - **1** $\{lim(F), U, X, W\}(\succ_{T_c}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$
 - ① $\lim(F) \succ_{\mathcal{T}_n}^{\{n\}} @(F, n)$ whose type-check succeeds, and yields
 - 0 $lim(F) > {\bar{n}} F$ which succeeds by Case 1.2, and
 - $\lim(F) \succ^{\{n\}} n$ which succeeds by Case 1. $ec(\lim(F), U, X, W) \succ^{\{n\}} \{\emptyset(F, n), U, X, W\}$, our remaining

- $\lim : (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F : \mathbb{N} \to \mathsf{Ord} \qquad n : \mathbb{N}$ $rec : \mathsf{Or} \times \alpha \times (\mathsf{Or} \to \alpha \to \alpha) \times ((\mathbb{N} \to \mathsf{Or}) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha$
 - rec(lim(F), U, X, W) $\succ_{\mathcal{T}_{\mathcal{S}}}^{\emptyset}$ @(W, F, $\lambda n.rec$ (@(F, n), U, X, W)) yields 2 subgoals:
 - $\alpha =_{\mathcal{T}_S} \alpha$ which is trivially satisfied, and
 - **③** rec(lim(F), U, X, W) ≻[∅] { $W, F, \lambda n.rec(@(F, n), U, X, W)$ } which simplifies to:
 - $rec(lim(F), U, X, W) \succ^{\emptyset} W$ which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ_{1}^{\emptyset} F$, which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n. rec(@(F, n), U, X, W)$ yields • $rec(lim(F), U, X, W) \succ^{\{n\}} rec(@(F, n), U, X, W)$ yields
 - ① $\{lim(F), U, X, W\}(\succ_{T_c}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$
 - \bigcirc $\lim(F) \succeq_{\mathcal{T}_n}^{\{n\}} \bigcirc (F, n)$ whose type-check succeeds, and yields
 - 0 $lim(F) > {n} F$ which succeeds by Case 1.2, and
 - 1 $\lim(F) > {n \choose n}$ which succeeds by Case 1.

- $lim : (\mathbb{N} \to Ord) \Rightarrow Ord \qquad F : \mathbb{N} \to Ord \qquad n : \mathbb{N}$ $rec : Or \times \alpha \times (Or \to \alpha \to \alpha) \times ((\mathbb{N} \to Or) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha$
 - rec(lim(F), U, X, W) $\succ_{\mathcal{T}_{\mathcal{S}}}^{\emptyset}$ @(W, F, $\lambda n.rec$ (@(F, n), U, X, W)) yields 2 subgoals:
 - $\alpha =_{\mathcal{T}_{\mathcal{S}}} \alpha$ which is trivially satisfied, and
 - **③** rec(lim(F), U, X, W) ≻[∅] { $W, F, \lambda n.rec(@(F, n), U, X, W)$ } which simplifies to:
 - $rec(lim(F), U, X, W) \succ^{\emptyset} W$ which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ \emptyset F$, which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields • $rec(lim(F), U, X, W) \succ^{\{n\}} rec(@(F, n), U, X, W)$ yields
 - $fec(Mm(F), U, X, W) \succ fec(@(F, n), U, X, W)$ yields • $fin(F), U, X, W \} (\succ_{T_S}^{\{n\}})_{mul} \{@(F, n), U, X, W\}, \text{ hence}$
 - ① $\lim(F) \succ_{\mathcal{T}_n}^{\{n\}} \mathbb{Q}(F, n)$ whose type-check succeeds, and yields
 - 0 $lim(F) > {\tilde{n}} F$ which succeeds by Case 1.2, and
 - 0 $\lim(F) > {n}$ n which succeeds by Case 1.

- $lim : (\mathbb{N} \to Ord) \Rightarrow Ord \qquad F : \mathbb{N} \to Ord \qquad n : \mathbb{N}$ $rec : Or \times \alpha \times (Or \to \alpha \to \alpha) \times ((\mathbb{N} \to Or) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha$
 - rec(lim(F), U, X, W) $\succ_{\mathcal{T}_{\mathcal{S}}}^{\emptyset}$ @(W, F, $\lambda n.rec$ (@(F, n), U, X, W)) yields 2 subgoals:
 - 2 $\alpha =_{\mathcal{T}_S} \alpha$ which is trivially satisfied, and
 - **③** rec(lim(F), U, X, W) ≻[∅] { $W, F, \lambda n.rec(@(F, n), U, X, W)$ } which simplifies to:
 - $rec(lim(F), U, X, W) \succ^{\emptyset} W$ which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1, • $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n. rec(@(F, n), U, X, W)$ yields
 - \circ rec(lim(F), U, X, W) \succ {n} rec(@(F, n), U, X, W) yields
 - **3** $\{lim(F), U, X, W\}(\succ_{T_c}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$
 - ① $lim(F) \succ_{T_s}^{\{n\}} @(F, n)$ whose type-check succeeds, and yields
 - \bigcirc lim(F) \succ {n} F which succeeds by Case 1.2, and
 - im(F) $\succ^{\{n\}} n$ which succeeds by Case 1.
 - Proc(lim(F), U, X, W) \succ ${n}$ { $\mathbb{Q}(F, n)$, U, X, W}, our remaining goal, succeeds easily by Cases 1.2. Leand $\mathbb{Z}(A, \mathbb{R}) = \mathbb{R}$

- $lim: (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F: \mathbb{N} \to \mathsf{Ord}$ n : N $rec: Or \times \alpha \times (Or \rightarrow \alpha \rightarrow \alpha) \times ((\mathbb{N} \rightarrow Or) \rightarrow (\mathbb{N} \rightarrow \alpha) \rightarrow \alpha) \Rightarrow \alpha$
 - $rec(lim(F), U, X, W) \succ_{\mathcal{T}_c}^{\emptyset} @(W, F, \lambda n. rec(@(F, n), U, X, W))$ vields 2 subgoals:
 - 2 $\alpha =_{\mathcal{T}_{S}} \alpha$ which is trivially satisfied, and
 - orec(lim(F), U, X, W) $\succ^{\emptyset} \{W, F, \lambda n.rec(@(F, n), U, X, W)\}$ which simplifies to:
 - or $rec(lim(F), U, X, W) > \emptyset$ W which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1,
 - o $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields
 - $oldsymbol{o}$ $rec(lim(F), U, X, W) \succ {n} rec(@(F, n), U, X, W)$ yields
 - **1** $\{lim(F), U, X, W\}(\succ_{T_S}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$
 - Iim(F) $\succ_{T_s}^{\{n\}}$ @(F, n) whose type-check succeeds, and yields

 - $rec(lim(F), U, X, W) \succ {n}{0(F, n), U, X, W}$, our remaining goal, succeeds easily by Cases 1.2. 1 and ₫ 1 ⋅ ≣ ト ⋅ ≣ ト ⊃ ⊆ → ⊃ ۹ ⋅ ભ

- $lim: (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F: \mathbb{N} \to \mathsf{Ord}$ n : N $rec: Or \times \alpha \times (Or \rightarrow \alpha \rightarrow \alpha) \times ((\mathbb{N} \rightarrow Or) \rightarrow (\mathbb{N} \rightarrow \alpha) \rightarrow \alpha) \Rightarrow \alpha$
 - $rec(lim(F), U, X, W) \succ_{\mathcal{T}_c}^{\emptyset} @(W, F, \lambda n. rec(@(F, n), U, X, W))$ vields 2 subgoals:
 - 2 $\alpha =_{\mathcal{T}_{S}} \alpha$ which is trivially satisfied, and
 - orec(lim(F), U, X, W) $\succ^{\emptyset} \{W, F, \lambda n.rec(\emptyset(F, n), U, X, W)\}$ which simplifies to:
 - or $rec(lim(F), U, X, W) > \emptyset$ W which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1,
 - o $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields
 - $oldsymbol{o}$ $rec(lim(F), U, X, W) \succ {n} rec(@(F, n), U, X, W)$ yields
 - **1** $\{lim(F), U, X, W\}(\succ_{T_S}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$
 - Iim(F) $\succ_{\mathcal{T}_s}^{\{n\}} @(F, n)$ whose type-check succeeds, and yields
 - 0 $lim(F) > {n} F$ which succeeds by Case 1.2, and

 - $equal rec(lim(F), U, X, W) \succ {n}{\{\emptyset(F, n), U, X, W\}}, \text{ our remaining}$ goal, succeeds easily by Cases 1.2. 1 and ₫ 1 ⋅ ≣ ト ⋅ ≣ ト ⊃ ⊆ → ⊃ ۹ ⋅ ભ

- $lim: (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F: \mathbb{N} \to \mathsf{Ord}$ n : N $rec: Or \times \alpha \times (Or \rightarrow \alpha \rightarrow \alpha) \times ((N \rightarrow Or) \rightarrow (N \rightarrow \alpha) \rightarrow \alpha) \Rightarrow \alpha$
 - $rec(lim(F), U, X, W) \succ_{\mathcal{T}_c}^{\emptyset} @(W, F, \lambda n. rec(@(F, n), U, X, W))$ vields 2 subgoals:
 - 2 $\alpha =_{\mathcal{T}_{S}} \alpha$ which is trivially satisfied, and
 - orec(lim(F), U, X, W) $\succ^{\emptyset} \{W, F, \lambda n.rec(\emptyset(F, n), U, X, W)\}$ which simplifies to:
 - or $rec(lim(F), U, X, W) > \emptyset$ W which succeeds by Case 1.1,
 - $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1,
 - o $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields
 - $oldsymbol{o}$ $rec(lim(F), U, X, W) \succ {n} rec(@(F, n), U, X, W)$ yields
 - **1** $\{lim(F), U, X, W\}(\succ_{T_S}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$
 - Iim(F) $\succ_{\mathcal{T}_s}^{\{n\}} @(F, n)$ whose type-check succeeds, and yields
 - 10 $\lim(F) > {n} F$ which succeeds by Case 1.2, and
 - 1 $\lim(F) > \{n\}$ n which succeeds by Case 1.
 - $partial rec(lim(F), U, X, W) \succ {n}{\{\emptyset(F, n), U, X, W\}}, \text{ our remaining}$ goal, succeeds easily by Cases 1.2. 1 and ₫ 1 ⋅ ≣ ト ⋅ ≣ ト ⊃ ⊆ → ⊃ ۹ ⋅ ભ

$$\lim : (\mathbb{N} \to \mathsf{Ord}) \Rightarrow \mathsf{Ord} \qquad F : \mathbb{N} \to \mathsf{Ord} \qquad n : \mathbb{N}$$
$$\mathsf{rec} : \mathsf{Or} \times \alpha \times (\mathsf{Or} \to \alpha \to \alpha) \times ((\mathbb{N} \to \mathsf{Or}) \to (\mathbb{N} \to \alpha) \to \alpha) \Rightarrow \alpha$$

- $rec(lim(F), U, X, W) \succ_{\mathcal{T}_c}^{\emptyset} @(W, F, \lambda n. rec(@(F, n), U, X, W))$ vields 2 subgoals:
 - $\alpha =_{\mathcal{T}_{\mathcal{S}}} \alpha$ which is trivially satisfied, and orec(lim(F), U, X, W) $\succ^{\emptyset} \{W, F, \lambda n.rec(\emptyset(F, n), U, X, W)\}$
 - which simplifies to:
 - \bullet rec(lim(F), U, X, W) \succ^{\emptyset} W which succeeds by Case 1.1, **o** $rec(lim(F), U, X, W) \succ^{\emptyset} F$, which succeeds by Case 1.1,
 - o $rec(lim(F), U, X, W) \succ^{\emptyset} \lambda n.rec(@(F, n), U, X, W)$ yields $oldsymbol{o}$ $rec(lim(F), U, X, W) \succ {n} rec(@(F, n), U, X, W)$ yields
 - **1** $\{lim(F), U, X, W\}(\succ_{T_S}^{\{n\}})_{mul}\{@(F, n), U, X, W\}, \text{ hence}\}$ Iim(F) $\succ_{\mathcal{T}_s}^{\{n\}} @(F, n)$ whose type-check succeeds, and yields
 - 0 $lim(F) > {n} F$ which succeeds by Case 1.2, and
 - 1 $\lim(F) > \{n\}$ n which succeeds by Case 1. $ext{lim}(F), U, X, W) \succ ext{n}{\emptyset(F, n), U, X, W}, \text{ our remaining}$

Conclusion

Achievements: A quite powerful powerful which adapts easily to higher-order rewriting based on higher-order pattern matching. See [Jouannaud and Rubio, RTA'2006]

Remaining problems:

- Use term interpretations instead of a precedence on function symbols;
- Integrate AC;
- Generalization to the Calculus of Inductive Constructions;
- Develop the tool (see our Web page).

Acknowledgments: to Mitsuhiro Okada for our long standing collaboration on these matters.