
A Categorical Semantics for The Parallel Lambda-Calculus

Germain Faure
U. Henri Poincaré & LORIA

PROTHEO, Bât. B Campus scientifique
54506 Vandoeuvre-lès-Nancy, France
germain.faure@loria.fr

Alexandre Miquel
U. Paris 7 Denis Diderot

PPS, Case 7014, 2 Place Jussieu
75251 Paris Cedex 05, France

alexandre.miquel@pps.jussieu.fr

Abstract

In this paper, we define a sound and complete categori-
cal semantics for the parallel λ-calculus, based on a notion
of aggregation monad which is modular w.r.t. associativity,
commutativity and idempotence.

To prove completeness, we introduce a category of par-
tial equivalence relations adapted to parallelism, in which
any extension of the basic equational theory of the calculus
is induced by some model.

We also present abstract methods to construct models of
the parallel λ-calculus in categories where particular equa-
tions have solutions, such as the category of Scott domains
and its variants, and check that G. Boudol’s original seman-
tics is a particular case of ours.

1. Introduction

The categorical semantics of the untyped λ-calculus [4],
which is based on Cartesian closed categories (ccc) with re-
flexive objects [8], provides a rich framework to classify all
the existing models of the λ-calculus [4]. One of the most
striking properties of this semantics is that it is complete in
a very strong sense [12, 13]: for each extension T of the
basic equational theory of the λ-calculus, it is possible to
find a reflexive object (in a syntactical ccc of partial equiv-
alence relations) such that the equational theory induced by
the interpretation of pure λ-terms in this object is exactly
the theory T . Consequently, there exists a reflexive object
which captures β-conversion, so that two terms having the
same denotation in all reflexive objects have the same deno-
tation in this particular object, and thus are β-convertible.

The aim of this paper is to extend the categorical seman-
tics of the λ-calculus to the parallel λ-calculus (introduced
in [5]), while keeping a similar property of completeness.

Formally, the parallel λ-calculus is obtained by extend-
ing the pure λ-calculus with a binary operator M // N , that
intuitively represents the parallel execution of M and N .

The parallel λ-calculus adds to the equational theory of the
pure λ-calculus the single equation

(δ) (M1 // M2)N = M1N // M2N

expressing the distributivity of function application w.r.t.
parallel aggregation. Considering this equation as a reduc-
tion rule (orienting it from left to right), this rule means
that the execution of λ-terms is never blocked by the paral-
lel construction, but that it simply ‘forks’ each time such a
construction comes in head position.

The parallel λ-calculus was initially introduced as a tool
to study full-abstraction of the interpretation of λ-terms in
Scott domains. In this framework, Boudol extended the in-
terpretation of pure λ-terms to the parallel construction us-
ing the join operation.

However, the already existing models of the parallel λ-
calculus appear to be too limited if we want to model fur-
ther extensions of it—such as Cirstea and Kirchner’s rewrit-
ing calculus [7]—or simply if we are interested in the study
of the parallel λ-calculus per se. Scott semantics is well-
suited to achieve full-abstraction; but it is not sufficient to
capture neither the basic equational theory of the calculus
nor many interesting extensions of it—typically with one of
the equations (ε) and (η) that we will present in section 2.
In the same way, interpreting the parallel operator as the bi-
nary join automatically validates associativity, commutativ-
ity and idempotence (ACI), although on a purely syntactical
level, these equations are clearly independent from the ba-
sic equations (β) and (δ). For these reasons, there is a need
for a more general and more modular semantics.

The primary motivation of this work was the study of
the rewriting calculus (a.k.a. the ρ-calculus), an extension
of the λ-calculus that combines pattern-matching with a no-
tion of structure (written M o N) used to build collections
of terms. However, the semantical study of the ρ-calculus
quickly revealed the similarity between the notion of struc-
ture and Boudol’s parallel construct—up to the fact that the
notion of structure of the ρ-calculus is not systematically
required to be associative, commutative and/or idempotent.

1

Actually, it seems clear to the authors that up the ACI equa-
tions, the ρ-calculus is nothing but the parallel λ-calculus
extended with a mechanism of pattern-matching.

The semantical study of the ρ-calculus also pointed out
many interesting problems related to the interaction be-
tween a mechanism of pattern-matching and the parallel
construct. These problems (that we briefly discuss in the
end of the paper) helped us to grasp the importance of ad-
ditive terms (defined in subsection 2.3) which play a central
rôle in the proof of completeness. (Boudol’s shift towards
the λ-calculus with resources [6] seems to be motivated by
similar reasons.) We hope that the categorical semantics
presented in this paper will contribute in future works to a
better understanding of this interaction, and thus will con-
stitute a significant step towards a denotational semantics
for the ρ-calculus.

Outline of the paper

The paper is organized as follows.
In section 2 we recall the syntax and equations of the

parallel λ-calculus.
In section 3, we present a notion of aggregation monad

from which we define (in section 4) the categorical notion
of model for the parallel λ-calculus.

To prove completeness, we define a category of pers (in
section 5) and study its properties. Then we present in sec-
tion 6 two abstract methods for building models.

We conclude by showing some problems related to the
interaction of ML-style pattern-matching with the parallel
construct (in section 7).

2. The parallel λ-calculus

2.1. The core calculus

The parallel λ-calculus is obtained by extending the pure
λ-calculus with a binary operator M // N representing the
parallel execution of M and N . Formally, the terms of the
parallel λ-calculus are given by

M,N ::= x | λx .M | MN | M // N

and the corresponding equational theory is defined from the
two equations

(β)
(δ)

(λx .M)N = M{x := N}
(M1 // M2)N = M1N // M2N

Throughout the paper, we will consider parallel λ-terms
from the point of view of equational reasoning rather than
from the point of view of reduction. However, both equa-
tions can also be presented as rewrite rules (orienting them
from left to right), and it can be checked that the rewrite
systems induced by β, δ and βδ are confluent.

2.2. Extensions of the equational theory

In many situations, it is desirable to extend the core cal-
culus with one of the following equations:

(ε)
(η)

λx . (M1 // M2) = λx .M1 // λx .M2

λx .Mx = M (if x /∈ FV (M))

Again, both equations can be presented as reduction rules,
orienting them from left to right. Notice that in the presence
of equation δ, the equation η subsumes ε, that is: ε ⊂ δη
(equationally). From the point of view of the corresponding
rewrite systems, both reduction rules δ and η make a critical
pair which is closed with the ε-reduction rule.

Finally, the parallel λ-calculus can be extended with any
combination of the three equations expressing associativity,
commutativity and idempotence of the parallel operator:

(A)
(C)
(I)

(M1 // M2) // M3 = M1 // (M2 // M3)
M1 // M2 = M2 // M1

M // M = M

In what follows, most definitions will be modularized in
order to handle the 24 variants of the calculus obtained by
combining each of the 3 basic calculi βδ, βδε and βδη with
the 23 = 8 possible combinations of A, C, and I .

2.3. Additivity

Let T be an equational theory of the parallel λ-calculus
which contains at least β and δ. We say that a term M is
additive (w.r.t. its first argument) in the theory T when

M(N1 // N2) =T MN1 // MN2

for all terms N1, N2. By substitutivity, it is equivalent to
say that

M(x // y) =T Mx // My ,

where x and y are fresh variables.
When a term M is additive in the theory βδ, we simply

say that M is additive. Examples of additive terms are the
identity term λx . x and more generally all the terms of the
form λx . x ~N where x /∈ FV (~N) (i.e. tuples).

It is important not to confound the notion of additivity
with the more global notion of linear λ-term. (Remember
that a λ-term is said to be linear when all its free and bound
variables occur exactly once.) In particular, there is no in-
clusion between both notions:

• The term λx . x(λy . yy) is additive but not linear,

• The term λxy . yx is linear but not additive.

2

3. Aggregation monads

We now present a notion of aggregation monad which is
the categorical counterpart of the syntactical notion of par-
allel execution. We use here the terminology of ‘aggrega-
tion’ to emphasize the fact that this notion exists indepen-
dently from the properties of associativity, commutativity
and idempotence that are usually associated with the idea
of parallelism. (However, we keep the name of parallel λ-
calculus, for obvious historical reasons.)

3.1. Notion of aggregation

Let T be a monad [8] on a Cartesian category C (with
unit η and multiplication µ). A notion of aggregation for
the monad T is a natural transformation

uA : TA×TA → TA

such that the following diagram commutes

(1)

T2A×T2A

µA×µA

��

uTA // T2A

µA

��
TA×TA uA

// TA

for all objects A. (As usual, we will frequently drop the
subscript and write u for uA.) An aggregation monad is
simply a monad equipped with a notion of aggregation.

A consequence of diagram (1) which appears to be very
useful in proofs is that the arrow uA can always be defined
in terms of the arrow uTA via the commutative diagram

TA×TA

uA

++
ηA×ηA

// T2A×T2A uTA

// T2A µA

// TA

Finally, we say that a notion of aggregation u is asso-
ciative (A), commutative (C) or idempotent (I) depending
on the corresponding diagram commutes in Fig. 1 (where α
denotes the associativity isomorphism of ×).

Typical notions of aggregation monads are the following:

In the category of sets:

• The powerset monad with union (ACI)

• The multiset monad with multi-union (AC)

• The list monad with concatenation (A)

• The free group monad with composition (A)

In the category of Scott domains:

• The lower powerdomain monad with join (ACI)

• The upper powerdomain monad with meet (ACI)

Associativity

TA× (TA×TA)

id×u
��

α // (TA×TA)×TA

u×id
��

TA×TA

u ''NNNNNNNNN TA×TA

uwwppppppppp

TA

Commutativity Idempotence

TA×TA
u

))TTTTTTT

〈π2;π1〉

��
TA

TA×TA
u

55jjjjjjj

TA

〈id;id〉
��

id

%%KKKKKKKKKK

TA×TA u
// TA

Figure 1. ACI diagrams of aggregation

In Ab-categories [8] (with finite products), the funda-
mental aggregation monad is the binary sum, given as the
identity monad equipped with the arrow

π1 + π2 : A×A → A (ACI)

3.2. Algebras and additive morphisms

Let C be a Cartesian category equipped with an aggrega-
tion monad 〈T, u〉. Each T-algebra 〈A, hA〉 can be given
an aggregation operator pA : A×A → A defined by

pA = hA ◦ uA ◦ (ηA × ηA) .

Of course, the aggregation operator pA inherits the prop-
erties of associativity, commutativity and idempotence from
the underlying aggregation monad 〈T, u〉:

Lemma 1 — If the aggregation monad 〈T, u〉 is asso-
ciative, commutative, and/or idempotent, then for all T-
algebras 〈A, hA〉 the aggregation operator pA : A×A → A
is associative, commutative, and/or idempotent in the sense
of the diagrams:

A× (A×A)
id×pA

��

α // (A×A)×A

pA×id
��

A×A

pA %%KKKKKKK A×A

pAyysssssss

A
A×A pA

))RRRRRR

〈π2;π1〉
��

A

A×A
pA

66llllll

A

〈id;id〉
��

id

%%KKKKKKKK

A×A pA

// A

3

Proof. The property is straightforward for idempotence
and commutativity. The diagram for associativity deeply
relies on the characterization of uA in terms of uTA stated
in subsection 3.1. 2

A consequence of diagram (1) is that morphisms of al-
gebras are additive in the sense that they commute with the
aggregation operator:

Lemma 2 — If 〈A, hA〉 and 〈B, hB〉 are T-algebras, then
for all morphisms of T-algebras f : 〈A, hA〉 → 〈B, hB〉
the following diagram commutes:

A×A
pA //

f×f
��

A

f
��

B ×B pB

// B

Remember that for all objects A,B and for all morphisms
f : A → B, the morphism Tf is a morphism of algebras
from 〈TA,µA〉 to 〈TB,µB〉.

3.3. Strong notion of aggregation

Let C be a Cartesian category. A strong monad of C [10]
is a monad T of C equipped with a binatural transformation

tA,B : TA×B → T(A×B)

such that the 3 diagrams of Fig. 2 commute, where α de-
notes the associativity isomorphism of× and r the right unit
isomorphism. (Intuitively, the transformation t distributes
the second component of its input to all the elements of the
first component—thinking of TA as a type of lists or sets.)

TA× (B × C) t //

α
��

T(A× (B × C))

Tα
��

(TA×B)× C

t×id ''NNNNNNNNN
T((A×B)× C)

T(A×B)× C

t

77oooooooooo TA
r

wwpppppppppp
Tr

��
TA× 1

t
// T(A× 1)

A×B

η×id

��

η

((PPPPPPPPPP

TA×B
t

// T(A×B)

T2A×B
t

//

µ×id

OO

T(TA×B)
Tt

// T2(A×B)

µ
hhPPPPPPPPPP

Figure 2. Diagrams of strong monadicity

In a strong monad T, we say that a notion of aggrega-
tion u is strong when the following diagram commutes:

(2)

(TA×TA)×B

〈π1×id; π2×id〉
��

u×id // TA×B

t

��

(TA×B)× (TA×B)

t×t
��

T(A×B)×T(A×B)
u

// T(A×B)

A strong aggregation monad is simply a strong monad
equipped with a strong notion of aggregation. In particu-
lar, all the examples of aggregation monads given in sub-
section 3.1 are strong aggregation monads.

4. Models of the parallel λ-calculus

4.1. Definition

A model of the parallel λ-calculus is a ccc C equipped
with a strong aggregation monad 〈T, u〉 and a quadruple
〈D, lam, app, flat〉 such that

• 〈D, lam, app〉 is a reflexive object of C,

• 〈D, flat〉 is a T-algebra;

and such that the following diagram commutes:

(δ)

TD

Tapp ��

flat // D
app

��
T(DD)

Λ(flat ◦Tev ◦ t)
// DD

where the bottom arrow is built by curryfying the following
sequence of morphisms:

T(DD)×D
t

// T(DD×D)
Tev

// T(D)
flat

// D

Moreover, we say that such a model is:

• an ε-model when the following diagram commutes:

(ε)

TD
flat // D

T(DD)

Tlam

OO

Λ(flat ◦Tev ◦ t)
// DD

lam

OO

• an η-model when lam ◦ app = id (η), that is, when
the arrows app and lam are converse isomorphisms;

• associative, commutative or idempotent when the un-
derlying aggregation monad 〈T, u〉 is.

4

It is straightforward to check that any η-model of the paral-
lel λ-calculus is also an ε-model.

Finally, each model of the parallel λ-calculus comes with
a parallel operator par : D ×D → D given by

par = pD = flat ◦ uD ◦ (ηD × ηD) .

4.2. Interpreting parallel λ-terms

Let C be a ccc with a strong aggregation monad 〈T, u〉,
and 〈D, lam, app, flat〉 a model of the parallel λ-calculus in
this category. Parallel λ-terms are interpreted in the model
in the same way as pure λ-terms in any reflexive object.

Formally, the interpretation is parameterized by a list of
variables (notation: `, `′, etc.) which can be seen as a de-
generate form of context where all variables are declared
with type D. Given a list of variables `, we write D` the
object defined by D[] = 1 and D`,x = D` ×D.

To each pair (`, x) formed by a list of variables ` and a
variable x that belongs to `, we define the projection πx

` :
D` → D by setting

πx
`,x = π2 ∈ D` ×D → D

πx
`,y = πx

` ◦ π1 ∈ D` ×D → D (if y 6= x)

Each parallel λ-term M whose free variables belong to a
list ` is interpreted as an arrow JMK` : D` → D given by

(VAR)
(LAM)
(APP)
(PAR)

JxK` = πx
`

Jλx .MK` = lam ◦ Λ(JMK`,x)
JMNK` = ev ◦ 〈app ◦ JMK`; JNK`〉

JM // NK` = par ◦ 〈JMK`; JNK`〉

Soundness of this interpretation relies on the lemma

Lemma 3 (Substitutivity) — Given a list of variables `
and a variable x, then for all terms M and N such that
FV (M) ⊂ (`, x) and FV (N) ⊂ `, we have:

JM{x := N}K` = JMK`,x ◦ 〈id; JNK`〉

Proof. By induction on M . 2

Let T denote one of the 24 equational theories obtained
by combining the three basic theories βδ, βδε, βδη with
all possible combinations of A, C and I . We say that the
model D is adapted to the theory T when

• if T contains the equation ε (resp. η), then D is an
ε-model (resp. an η-model);

• if T contains the equation A (resp. C, I), then the
underlying aggregation monad 〈T, u〉 is associative
(resp. commutative, idempotent).

Proposition 4 (Soundness) — If the model is adapted to
the theory T , then for all lists of variables ` and for all
terms M,M ′ whose free variables occur in `, we have:

M =T M ′ ⇒ JMK` = JM ′K` .

Proof. It suffices to check the equality for each equation
of T . The soundness of equation (δ) reduces to the cor-
responding diagram (δ) using the fact that the aggregation
monad T is strong (diagram (2)). 2

4.3. Examples in Scott domains

In the category of Scott domains [?, 3], the ACI-
aggregation monad 〈Pl;∨〉 (where Pl denotes the lower
powerdomain [11, 14]) is the source of a plethora of models
for the parallel λ-calculus, due to the fact that:

Proposition 5 — Any Scott domain D with a top element is
a Pl-algebra whose aggregation operator pD is the binary
join: pD(x, y) = x ∨ y (for all x, y ∈ D).

Proof. Remember that a Scott domain has a top element
iff it has all its joins (the converse already holds for cpos).
We define the morphism hD : Pl(D) → D from the map

h0 : K(Pl(D)) = P+
fin(K(D)) → D

{k1; . . . ; kn} 7→ k1 ∨ · · · ∨ kn

(writing K(D) the set of finite elements of D) by setting

hD(x) = sup
k�x

h0(k)

(where k ranges over all finite approximants of x) for all
x ∈ Pl(D). From this construction, it is obvious that the
corresponding aggregation operator is the binary join. 2

Moreover, the notion of morphism of algebras (cf sub-
section 3.2) exactly corresponds to the notion of additive
functions in Scott domains:

Proposition 6 — Let D and E be two Scott domains with
a top element. A continuous function f : D → E is a
morphism of algebras iff it is additive, namely:

f(⊥) = ⊥ and f(x ∨ y) = f(x) ∨ f(y)

for all x, y ∈ D.

(Notice that we require that additive functions are strict.)

Proposition 7 — If D is a Scott domain with a top ele-
ment equipped with a reflexive structure (lam, app) where
app : D → DD is an additive continuous function, then D
is a model of the parallel λ-calculus w.r.t. the aggregation
monad 〈Pl;∨〉.

5

Proof. To check that the diagram (δ) commutes, it suffices
to check that for all k̄ = {k1; . . . ; kn} ∈ K(Pl(D)) and for
all x ∈ D we have

app(k1 ∨ · · · ∨ kn)(x) =
app(k1)(x) ∨ · · · ∨ app(kn)(x) ,

which follows from the hypothesis and the fact that function
application is additive on its first argument. 2

An obvious example of such a model is Scott’s D∞ do-
main, which is built from the domain D0 = {>⊥} by taking
the colimit of the sequence Di+1 = (Di → Di) (i ≥ 0).

Application: Boudol’s models In [5], Boudol presents
two models D∗ and Ds for λ-calculi with a parallel con-
struct, as the initial solutions of both equations

D∗ = (D∗ → D∗)⊥ and Ds = (Ds →⊥ Ds)⊥

(where ()⊥ denotes lifting and (→⊥) the space of strict
continuous functions). The first model D∗ (due to Abram-
sky [1, 2]) is clearly a model of the parallel λ-calculus from
Prop. 7 due to the existence of a retraction pair

(up∗,down∗) : (D∗ → D∗) / D∗

whose second component (the projection) is additive. The
second model Ds (which interprets a λ-calculus with call-
by-value abstractions) can be decomposed as follows{

Ds = Vs⊥
Vs = Vs⊥ →⊥ Ds = Vs → Ds

where Vs is a space of values (as opposed to Ds, which is
a space of computations). Here, the space of values Vs is
again a model of the parallel λ-calculus from Prop. 7 due to
the existence of a retraction pair

(λf . ups ◦ f, λf . downs ◦ f) : (Vs → Vs) / Vs

whose second component is additive. (Here, (ups,downs)
denotes the retraction Vs / Ds.)

5. The PER-model

5.1. The notion of T -per

Let T be one of the 24 equational theories of the parallel
λ-calculus mentioned in section 2.

Definition 1 (T -per) — A T -partial equivalence relation
(T -per) is a partial equivalence relation (per) A on the set
of parallel λ-terms such that T ◦A ⊂ A, that is, a symmet-
ric and transitive relation A such that

(M,M ′) ∈ A ∧ M ′ =T M ′′ ⇒ (M,M ′′) ∈ A

for all terms M,M ′,M ′′.

Given a T -per A, we call the domain of A the set

dom(A) = {M | (M,M) ∈ A} .

T -pers are naturally ordered by inclusion: the smallest T -
per is the empty per (of domain the empty set) and the
largest T -per is the full per (of domain the set of all terms).
Moreover, T -pers are closed under arbitrary intersection,
and thus form a complete distributive lattice.

Two important constructions of T -pers are:

• The arrow A → B of two T -pers A and B, which is
defined for all M,M ′ by

(M,M ′) ∈ (A → B) iff
∀N,N ′ ((N,N ′) ∈ A ⇒ (MN, M ′N ′) ∈ B)

This construction is antimonotonic w.r.t. A and mono-
tonic w.r.t. B.

• The parallel closure A+ of a T -per A, which is in-
ductively defined by the two rules:

(M, M ′) ∈ A

(M, M ′) ∈ A+

(M1, M ′
1) ∈ A+

(M2, M ′
2) ∈ A+

M =T M1 // M2

M ′ =T M ′
1 // M ′

2

(M, M ′) ∈ A+

This construction is a closure operator, in the sense that
it is monotonic and fulfills A ⊂ A+ and A++ = A+.

Let us finally notice a few obvious but useful facts.

Fact 8 — For all T -pers A,B: (A → B)+ ⊂ A → B+.

On the other hand, the inclusion A → B ⊂ A+ → B+

does not hold in general. However, we still have:

Fact 9 — If two terms M1 and M2 are additive in the the-
ory T (cf subsection 2.3), then (M1,M2) ∈ (A → B)
implies (M1,M2) ∈ (A+ → B+).

5.2. The ccc structure of T -PER

Let T -PER be the category whose objects are T -pers
and whose hom-sets are given by

T -PER[A;B] = dom(A → B)/∼(A→B) ,

where ∼(A→B) denotes the (total) equivalence relation in-
duced by the T -per (A → B) on its domain.

The category T -PER has the structure of a ccc:

• The terminal object is the full T -per: 1 = >.

• The Cartesian product A×B is defined by

(M,M ′) ∈ (A×B) iff
(π1M,π1M

′) ∈ A and (π2M,π2M
′) ∈ B ,

where π1 = λp . p(λxy . x), π2 = λp . p(λxy . y) and
〈M1;M2〉 = λxp . p(M1x)(M2x).

6

• The exponent is given by BA = (A → B), the evalu-
ation arrow by ev = λp . π1p (π2p), and the curryfied
arrow by Λ(M) = λxy .M(λp . pxy).

5.3. The aggregation monad of T -PER

It would be tempting to define the aggregation monad
T of T -PER by setting TA = A+. Unfortunately, the
parallel closure operator A 7→ A+ is not functorial (since
A ⊂ A+ but (A → B) 6⊆ (A+ → B+)) and thus cannot be
given the structure of a monad.

To achieve functoriality, we first need to introduce the
following boxing mechanism:

The boxing monad For all M we set [M] = λx . xM
(this construction can be understood as a 1uple). Unboxing
is performed by applying I = λx . x, since [M]I =β M .

To each T -per A we associate a T -per [A] defined by

(M,M ′) ∈ [A] iff
∃(M0,M

′
0)∈A (M =T [M0] ∧M ′ =T [M ′

0]) .

Notice that both T -pers [A] and A are isomorphic via the
converse isomorphisms:

and
box = λx . [x] ∈ dom(A → [A])

unbox = λx . xI ∈ dom([A] → A) .

Moreover, we easily check that

[A → B] ⊂ [A] → B

for all T -pers A and B.
The correspondence A 7→ [A] is turned into a strong

monad as follows. First we make this correspondence func-
torial by setting ↑M = [λz . [Mz]] for all M , and by check-
ing that M ∈ dom(A → B) implies

↑M ∈ dom([A → [B]]) ⊂ dom([A] → [B]) .

Then we take η = box and µ = unbox, and set

t = λx . π1x(λy . [〈y, π2x〉]) .

The main property of the boxing monad is that boxed
objects (including lifted arrows ↑M) are additive:

Fact 10 — If a term M ∈ dom([A]), then M is additive in
the theory T (cf subsection 2.3).

This property is crucial for the definition below.

The aggregation monad We can now define our aggre-
gation monad T by setting

TA = [A]+

for all T -pers A. The functorial map ↑M and the natural
transformations η, µ and t are defined the same way as for
the boxing monad []. Of course, one has to check that these
constructions fit in their new types, which easily follows
from the properties of additivity (Fact 10).

Finally, we set

u = λp . (π1p // π2p)

and check that:

Proposition 11 — 〈T, u〉 is a strong aggregation monad on
the category T -PER.

Moreover, it is straightforward to check that the aggre-
gation monad 〈T, u〉 is associative, commutative or idem-
potent as soon as T contains the corresponding equation.

5.4. Completeness

Every model D of the parallel λ-calculus induces a con-
gruence written =D over the set of parallel λ-terms, which
is defined for all terms M and M ′ by

M =D M ′ iff JMKD
` = JM ′KD

`

(where ` is such that FV (MM ′) ⊂ `). Of course, the con-
gruence =D contains βδ.

We now want to show that the converse holds, in the
sense that for every congruence T containing βδ, there
exists a model D of the parallel λ-calculus that induces
the congruence T exactly, namely, a model D such that
M =D M ′ iff M =T M ′ for all M,M ′.

Theorem 1 (Completeness) — Let T0 be one of the 24
equational theories of the parallel λ-calculus mentioned in
section 2. For every congruence T ⊇ T0, there exists a
T0-per D such that:

1. D is a model of the parallel λ-calculus in T0-PER,
which is adapted to the theory T0;

2. M =D M ′ iff M =T M ′ (for all terms M,M ′)

The theorem is proved as follows: consider a congruence
T ⊇ T0(⊇ βδ). Noticing that the congruence T is a T0-
per whose domain is the set of all terms, we check that:

Proposition 12 — The T0-per T can be equipped with all
the structures of a model D of the parallel λ-calculus in the
category T0-PER.

7

Proof. We set D = T , lam = λxy . xy, app = λx . x (for
the structure of reflexive object) and flat = unbox (for the
structure of algebra), and we check that the diagram (δ) of
subsection 4.1 commutes. 2

We easily check that the model D defined above is an
ε-model (resp. an η-model) as soon as the equational the-
ory T0 (and, actually T) contains the equation ε (resp. the
equation η). Moreover, we know that the underlying aggre-
gation monad that comes with the category T0-PER is as-
sociative, commutative, idempotent as soon as T0 contains
the corresponding equation, hence:

Proposition 13 — The model D defined from the T0-per
T is adapted to the theory T0.

To conclude the proof of Theorem 1, we need to ensure
that the congruence induced by the model D is precisely the
congruence T . This relies on the following lemma:

Lemma 14 — Let ` = [x1, . . . , xn] be a list of variables.
For all terms M such that FV (M) ⊂ `, we have:

JMKD
` =βδ λz .M{x1 := πx1

` z; . . . ;xn := πxn

` z}

(where z is a fresh variable).

Proof. By induction on M . 2

From this lemma, we easily conclude that M =D M ′ iff
M =T M ′, and the proof of Theorem 1 is done.

6. Building models

In this section, we present two methods to build a
model of the parallel λ-calculus from a given ccc C and a
given strong aggregation monad 〈T, u〉. Both construction
methods—which rely on the existence of objects satisfying
particular equations—can be fruitfully used in the category
of Scott domains (and its variants) where such equations
have many interesting solutions.

6.1. First method

Theorem 2 — If D is an object such that (TD)D ' D,
then D can be given all the structures of a model of the
parallel λ-calculus, model which is in general neither an
ε-model nor an η-model.

Proof. Consider an object D equipped with converse iso-
morphisms

(TD)D
fold //

D
unfold
oo

First, we equip D with a structure of T-algebra by intro-
ducing the arrow flat : TD → D defined by

TD
Tunfold // T((TD)D)

Λ(f) // (TD)D fold // D

where f : T((TD)D)×D → TD is given by

T((TD)D)×D
t // T((TD)D×D) Tev // T2D

µ // TD

Then we define the reflexive structure by setting

DD
Λ(g) //

lam

**

TDD
fold //

Λ(h)
oo D

unfold
oo

app

jj

where g : DD ×D → TD and h : (TD)D ×D → D are
defined by

g : DD ×D
ev // D

η // TD

h : (TD)D ×D
ev // TD

flat // D

We then check that app ◦ lam = id (which comes from the
fact that Λ(h) ◦Λ(g) = id) and that diagram (δ) holds. 2

The typical use of this theorem in the category of Scott
domains is the following: assume that 〈T, u〉 is a strong
aggregation monad in the category of Scott domains whose
underlying endofunctor T is ωop-continuous (i.e. preserves
limits on ωop-chains). Then the correspondence

X 7→ (TX)X

induces an ω-cocontinuous (covariant) endofunctor in the
category Scottip of Scott domains equipped with injection-
projection pairs. Starting from a domain D0 equipped with
an injection retraction pair D0 � (TD0)D0 , it is easy to
build a smallest fixpoint D ' (TD)D containing D0 (in
the sense of injection-retraction pairs).

Notice that this way of constructing models in the cate-
gory of Scott domains is not limited to the lower powerdo-
main monad Pl, but that it can be also used with:

• The list monad, which defines an associative aggrega-
tion monad using the concatenation function;

• The free magma monad TX , defined as the smallest
fixpoint of the equation

TX =
(
X + (TX ×TX)

)
⊥ ,

that induces an aggregation monad which is neither as-
sociative, commutative nor idempotent.

6.2. Second method

The second construction method, which takes place in
a ccc C with denumerable Cartesian products, is inspired
by a standard method to build models of the λµ-calculus in
categories of domains.

8

Theorem 3 — Let 〈R, hR〉 be a T-algebra. If D is an ob-
ject such that D ' R(Dω) (where Dω denotes a denumer-
able Cartesian product of D), then D can be given all the
structures of an η-model of the parallel λ-calculus.

Proof. Let D be an object equipped with converse isomor-
phisms

R(Dω)
fold //

D
unfold
oo

Consider the natural isomorphism cons : A × Aω ∼→ Aω

and write hd = π1 ◦ cons−1 and tl = π2 ◦ cons−1. The
algebra structure of D is defined by

flat : TD
Tunfold // T(RDω

)
Λ(f)// RDω fold // D

where f : T(RDω

)×Dω → R is defined as the sequence

T(RDω

)×Dω t // T(RDω×Dω)
Tev // T(R)

hR // R .

The reflexive structure (lam, app) is defined by

DD

lam

**
Λ(unfold◦ev) // (RDω

)D

Λ(fold◦ev)
oo

Λ(g) //
RDω

unfold //
ΛΛ(h)
oo D

fold
oo

app

jj

where both arrows g and h are defined by

g = ev ◦ (ev × id) ◦ α ◦ (id× cons−1)
h = ev ◦ (id× cons) ◦ α

We easily check that Λ(unfold ◦ ev) and Λ(fold ◦ ev) are
converse isomorphisms, as well as Λ(g) and ΛΛ(h). We
conclude by checking that the diagram (δ) of subsection 4.1
commutes, which is an exercise of diagram chasing. 2

In Scott domains, the equation D = R(Dω) always
has solutions, since the endofunctor X 7→ R(Xω) is ω-
cocontinuous in the category of injection-projection pairs.
Notice that the least fixpoint D of this functor is not trivial
as soon as the algebra R is not trivial. Intuitively, the small-
est solution D can be understood as the smallest η-model
of the parallel λ-calculus which contains R (in the sense of
injection-projection pairs).

7. Future Work

As mentioned in the introduction, this work is initially
motivated by the semantical study of the ρ-calculus [7], a
formalism which combines ML-style pattern-matching with

parallel aggregation. The next step is thus to find a sat-
isfying way to integrate constructors and pattern-matching
in our setting. However, combining pattern-matching with
parallel aggregation naturally raises new problems related
to additivity. To understand this point, let us consider the
following example.

Assume that the parallel λ-calculus is enriched with
two constant constructors a, b and a unary constructor c(),
plus a syntactic construct [c(x) � N]M that matches the
term N against the pattern c(x), and binds all free occur-
rences of x in M to the argument of the destructed value.
(We do not give any special meaning to this construction
when N is not a constructed value.)

Now consider the term M = [c(x) � c(a // b)]F xx,
where F is an arbitrary function. The naive way to re-
duce M is to substitute the term (a // b) to x in the r.h.s.
F xx, hence:

[c(x) � c(a // b)]F xx → F (a // b) (a // b) .

(This strategy is the one which is actually implemented by
the standard encodings of constructed values and pattern-
matching in the λ-calculus.)

However, it is also legitimate to consider that a and b
represent two possible choices for the argument of the con-
structed value c(a // b). Following this intuition, a com-
pletely different reduction strategy is to distribute a and b
w.r.t. the matching construct, which yields:

[c(x) � c(a // b)]F xx → F aa // F b b .

Of course, both design choices are clearly incompatible,
which is easy to see by taking F = λxy . xy. This second
strategy—which seems to be impossible to simulate in the
core parallel λ-calculus—is much more interesting, since it
suggests that both operations of construction and destruc-
tion are additive:

c(N1 // N2) = c(N1) // c(N2)

[c(x)� (N1 // N2)]M = [c(x)� N1]M // [c(x)� N2]M

This example naturally raises the exciting challenge of
constructing a model of the ρ-calculus that implements the
second reduction strategy, while being rich enough to reflect
all the expressivity of ML-style pattern-matching, such as
the existence of infinitely many constructors of all arities
(with pairwise disjoint images), the existence of variadic
constructors, etc.

Acknowledgements

We would like to thank François Lamarche and Paul-
André Melliès who helped us to find our way through Cat-
egory theory.

9

References

[1] S. Abramsky. Domain theory in logical form. Annals
of Pure and Applied Logic, 51(1–2):1–77, 1991.

[2] S. Abramsky and C.-H. L. Ong. Full abstraction in the
lazy lambda calculus. Information and Computation,
105(2):159–267, 1993.

[3] R. M. Amadio and P.-L. Curien. Domains and
Lambda-Calculi, volume 46 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University
Press, Cambridge, 1998.

[4] H. P. Barendregt. The Lambda-Calculus, its syntax
and semantics. Studies in Logic and the Foundation of
Mathematics. North Holland, 1984. Second edition.

[5] G. Boudol. Lambda-calculi for (strict) parallel func-
tions. Information and Computation, 108(1):51–127,
1994.

[6] G. Boudol, P.-L. Curien, and C. Lavatelli. A seman-
tics for lambda calculi with resources. Mathematical
Structures in Computer Science, 9(4):437–482, 1999.

[7] H. Cirstea and C. Kirchner. The rewriting calculus —
Part I and II. Logic Journal of the Interest Group in
Pure and Applied Logics, 9(3):427–498, 2001.

[8] S. Mac Lane. Categories for the working mathemati-
cian. Graduate Texts in Mathematics. Springer, New
York / Berlin, 2nd. edition edition, 1998.

[9] E. Moggi. Computational lambda-calculus and mon-
ads. In Proc. of Logic in Compute Science, LICS’89,
pages 14–23. IEEE Computer Society Press, Washing-
ton, DC, 1989.

[10] E. Moggi. Notions of computation and monads. In-
formation and Computation, 93:55–92, 1991.

[11] G. D. Plotkin. A powerdomain construction. SIAM
Journal on Computing, 5(3):452–487, 1976.

[12] D. S. Scott. Lambda calculus: Some models,
some philosophy. In J. Barwise, H. J. Keisler, and
K. Kunen, editors, The Kleene Symposium, pages
223–265. North Holland, Amsterdam, 1980.

[13] D. S. Scott. Relating theories of the λ-calculus. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 403–450. Academic Press, 1980.

[14] M. B. Smyth. Power domains. Journal of Computer
and System Sciences, 16(1):23–36, 1978.

10

